Ecuaciones con diferenciales completas paso a paso
Ha introducido
$$x^{2} - 2 x y{\left(x \right)} \frac{d}{d x} y{\left(x \right)} - y^{2}{\left(x \right)} = 0$$Solución detallada
Tenemos la ecuación:$$x^{2} - 2 x y{\left(x \right)} \frac{d}{d x} y{\left(x \right)} - y^{2}{\left(x \right)} = 0$$
Sustituimos
$$u{\left(x \right)} = \frac{y{\left(x \right)}}{x}$$
y porque
$$y{\left(x \right)} = x u{\left(x \right)}$$
entonces
$$\frac{d}{d x} y{\left(x \right)} = x \frac{d}{d x} u{\left(x \right)} + u{\left(x \right)}$$
sustituimos
$$- x^{2} u^{2}{\left(x \right)} - 2 x^{2} u{\left(x \right)} \frac{d}{d x} x u{\left(x \right)} + x^{2} = 0$$
o
$$- 2 x^{3} u{\left(x \right)} \frac{d}{d x} u{\left(x \right)} - 3 x^{2} u^{2}{\left(x \right)} + x^{2} = 0$$
Esta ecuación diferencial tiene la forma:
f1(x)*g1(u)*u' = f2(x)*g2(u),
donde
$$\operatorname{f_{1}}{\left(x \right)} = 1$$
$$\operatorname{g_{1}}{\left(u \right)} = 1$$
$$\operatorname{f_{2}}{\left(x \right)} = - \frac{1}{x}$$
$$\operatorname{g_{2}}{\left(u \right)} = - \frac{1 - 3 u^{2}{\left(x \right)}}{2 u{\left(x \right)}}$$
Pasemos la ecuación a la forma:
g1(u)/g2(u)*u'= f2(x)/f1(x).
Dividamos ambos miembros de la ecuación en g2(u)
$$- \frac{1 - 3 u^{2}{\left(x \right)}}{2 u{\left(x \right)}}$$
obtendremos
$$\frac{2 u{\left(x \right)} \frac{d}{d x} u{\left(x \right)}}{3 u^{2}{\left(x \right)} - 1} = - \frac{1}{x}$$
Con esto hemos separado las variables x y u.
Ahora multipliquemos las dos partes de la ecuación por dx,
entonces la ecuación será así
$$\frac{2 dx u{\left(x \right)} \frac{d}{d x} u{\left(x \right)}}{3 u^{2}{\left(x \right)} - 1} = - \frac{dx}{x}$$
o
$$\frac{2 du u{\left(x \right)}}{3 u^{2}{\left(x \right)} - 1} = - \frac{dx}{x}$$
Tomemos la integral de las dos partes de la ecuación:
- de la parte izquierda la integral por u,
- de la parte derecha la integral por x.
$$\int \frac{2 u}{3 u^{2} - 1}\, du = \int \left(- \frac{1}{x}\right)\, dx$$
Tomemos estas integrales
$$\frac{\log{\left(3 u^{2} - 1 \right)}}{3} = Const - \log{\left(x \right)}$$
Hemos recibido una ecuación ordinaria con la incógnica u.
(Const - es una constante)
La solución:
$$\operatorname{u_{1}} = u{\left(x \right)} = - \frac{\sqrt{\frac{C_{1}}{x^{3}} + 3}}{3}$$
$$\operatorname{u_{2}} = u{\left(x \right)} = \frac{\sqrt{\frac{C_{1}}{x^{3}} + 3}}{3}$$
hacemos cambio inverso
$$y{\left(x \right)} = x u{\left(x \right)}$$
$$y1 = y(x) = - \frac{x \sqrt{\frac{C_{1}}{x^{3}} + 3}}{3}$$
$$y2 = y(x) = \frac{x \sqrt{\frac{C_{1}}{x^{3}} + 3}}{3}$$