Se da la ecuación de superficie de 2 grado:
$$7 x + 2 x_{1} x_{3} = 0$$
Esta ecuación tiene la forma:
$$a_{11} x^{2} + 2 a_{12} x x_{3} + 2 a_{13} x x_{1} + 2 a_{14} x + a_{22} x_{3}^{2} + 2 a_{23} x_{1} x_{3} + 2 a_{24} x_{3} + a_{33} x_{1}^{2} + 2 a_{34} x_{1} + a_{44} = 0$$
donde
$$a_{11} = 0$$
$$a_{12} = 0$$
$$a_{13} = 0$$
$$a_{14} = \frac{7}{2}$$
$$a_{22} = 0$$
$$a_{23} = 1$$
$$a_{24} = 0$$
$$a_{33} = 0$$
$$a_{34} = 0$$
$$a_{44} = 0$$
Las invariantes de esta ecuación al transformar las coordenadas son los determinantes:
$$I_{1} = a_{11} + a_{22} + a_{33}$$
|a11 a12| |a22 a23| |a11 a13|
I2 = | | + | | + | |
|a12 a22| |a23 a33| |a13 a33|
$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|$$
|a11 a14| |a22 a24| |a33 a34|
K2 = | | + | | + | |
|a14 a44| |a24 a44| |a34 a44|
|a11 a12 a14| |a22 a23 a24| |a11 a13 a14|
| | | | | |
K3 = |a12 a22 a24| + |a23 a33 a34| + |a13 a33 a34|
| | | | | |
|a14 a24 a44| |a24 a34 a44| |a14 a34 a44|
sustituimos coeficientes
$$I_{1} = 0$$
|0 0| |0 1| |0 0|
I2 = | | + | | + | |
|0 0| |1 0| |0 0|
$$I_{3} = \left|\begin{matrix}0 & 0 & 0\\0 & 0 & 1\\0 & 1 & 0\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}0 & 0 & 0 & \frac{7}{2}\\0 & 0 & 1 & 0\\0 & 1 & 0 & 0\\\frac{7}{2} & 0 & 0 & 0\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & 0 & 0\\0 & - \lambda & 1\\0 & 1 & - \lambda\end{matrix}\right|$$
| 0 7/2| |0 0| |0 0|
K2 = | | + | | + | |
|7/2 0 | |0 0| |0 0|
| 0 0 7/2| |0 1 0| | 0 0 7/2|
| | | | | |
K3 = | 0 0 0 | + |1 0 0| + | 0 0 0 |
| | | | | |
|7/2 0 0 | |0 0 0| |7/2 0 0 |
$$I_{1} = 0$$
$$I_{2} = -1$$
$$I_{3} = 0$$
$$I_{4} = \frac{49}{4}$$
$$I{\left(\lambda \right)} = - \lambda^{3} + \lambda$$
$$K_{2} = - \frac{49}{4}$$
$$K_{3} = 0$$
Como
$$I_{3} = 0 \wedge I_{2} \neq 0 \wedge I_{4} \neq 0$$
entonces por razón de tipos de rectas:
hay que
Formulamos la ecuación característica para nuestra superficie:
$$- I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0$$
o
$$\lambda^{3} - \lambda = 0$$
$$\lambda_{1} = -1$$
$$\lambda_{2} = 1$$
$$\lambda_{3} = 0$$
entonces la forma canónica de la ecuación será
$$\tilde x1 \cdot 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde x3^{2} \lambda_{2}\right) = 0$$
y
$$- \tilde x1 \cdot 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde x3^{2} \lambda_{2}\right) = 0$$
$$- \tilde x^{2} + 7 \tilde x1 + \tilde x3^{2} = 0$$
y
$$- \tilde x^{2} - 7 \tilde x1 + \tilde x3^{2} = 0$$
$$- 2 \tilde x1 + \left(\frac{\tilde x^{2}}{\frac{7}{2}} - \frac{\tilde x3^{2}}{\frac{7}{2}}\right) = 0$$
y
$$2 \tilde x1 + \left(\frac{\tilde x^{2}}{\frac{7}{2}} - \frac{\tilde x3^{2}}{\frac{7}{2}}\right) = 0$$
es la ecuación para el tipo paraboloide hiperbólico
- está reducida a la forma canónica