Sr Examen

Otras calculadoras

-4x1^2+x1*x2-6x2^2 forma canónica

El profesor se sorprenderá mucho al ver tu solución correcta😉

v

Gráfico:

x: [, ]
y: [, ]
z: [, ]

Calidad:

 (Cantidad de puntos en el eje)

Tipo de trazado:

Solución

Ha introducido [src]
      2       2            
- 6*x2  - 4*x1  + x1*x2 = 0
$$- 4 x_{1}^{2} + x_{1} x_{2} - 6 x_{2}^{2} = 0$$
-4*x1^2 + x1*x2 - 6*x2^2 = 0
Solución detallada
Se da la ecuación de la línea de 2-o orden:
$$- 4 x_{1}^{2} + x_{1} x_{2} - 6 x_{2}^{2} = 0$$
Esta ecuación tiene la forma:
$$a_{11} x_{2}^{2} + 2 a_{12} x_{1} x_{2} + 2 a_{13} x_{2} + a_{22} x_{1}^{2} + 2 a_{23} x_{1} + a_{33} = 0$$
donde
$$a_{11} = -6$$
$$a_{12} = \frac{1}{2}$$
$$a_{13} = 0$$
$$a_{22} = -4$$
$$a_{23} = 0$$
$$a_{33} = 0$$
Calculemos el determinante
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
o, sustituimos
$$\Delta = \left|\begin{matrix}-6 & \frac{1}{2}\\\frac{1}{2} & -4\end{matrix}\right|$$
$$\Delta = \frac{95}{4}$$
Como
$$\Delta$$
no es igual a 0, entonces
hallamos el centro de coordenadas canónicas. Para eso resolvemos el sistema de ecuaciones
$$a_{11} x_{20} + a_{12} x_{10} + a_{13} = 0$$
$$a_{12} x_{20} + a_{22} x_{10} + a_{23} = 0$$
sustituimos coeficientes
$$\frac{x_{10}}{2} - 6 x_{20} = 0$$
$$- 4 x_{10} + \frac{x_{20}}{2} = 0$$
entonces
$$x_{20} = 0$$
$$x_{10} = 0$$
Así pasamos a la ecuación en el sistema de coordenadas O'x'y'
$$a'_{33} + a_{11} x2'^{2} + 2 a_{12} x1' x2' + a_{22} x1'^{2} = 0$$
donde
$$a'_{33} = a_{13} x_{20} + a_{23} x_{10} + a_{33}$$
o
$$a'_{33} = 0$$
$$a'_{33} = 0$$
entonces la ecuación se transformará en
$$- 4 x1'^{2} + x1' x2' - 6 x2'^{2} = 0$$
Hacemos el giro del sistema de coordenadas obtenido al ángulo de φ
$$x2' = - \tilde x1 \sin{\left(\phi \right)} + \tilde x2 \cos{\left(\phi \right)}$$
$$x1' = \tilde x1 \cos{\left(\phi \right)} + \tilde x2 \sin{\left(\phi \right)}$$
φ - se define de la fórmula
$$\cot{\left(2 \phi \right)} = \frac{a_{11} - a_{22}}{2 a_{12}}$$
sustituimos coeficientes
$$\cot{\left(2 \phi \right)} = -2$$
entonces
$$\phi = - \frac{\operatorname{acot}{\left(2 \right)}}{2}$$
$$\sin{\left(2 \phi \right)} = - \frac{\sqrt{5}}{5}$$
$$\cos{\left(2 \phi \right)} = \frac{2 \sqrt{5}}{5}$$
$$\cos{\left(\phi \right)} = \sqrt{\frac{\cos{\left(2 \phi \right)}}{2} + \frac{1}{2}}$$
$$\sin{\left(\phi \right)} = \sqrt{1 - \cos^{2}{\left(\phi \right)}}$$
$$\cos{\left(\phi \right)} = \sqrt{\frac{\sqrt{5}}{5} + \frac{1}{2}}$$
$$\sin{\left(\phi \right)} = - \sqrt{\frac{1}{2} - \frac{\sqrt{5}}{5}}$$
sustituimos coeficientes
$$x2' = \tilde x1 \sqrt{\frac{1}{2} - \frac{\sqrt{5}}{5}} + \tilde x2 \sqrt{\frac{\sqrt{5}}{5} + \frac{1}{2}}$$
$$x1' = \tilde x1 \sqrt{\frac{\sqrt{5}}{5} + \frac{1}{2}} - \tilde x2 \sqrt{\frac{1}{2} - \frac{\sqrt{5}}{5}}$$
entonces la ecuación se transformará de
$$- 4 x1'^{2} + x1' x2' - 6 x2'^{2} = 0$$
en
$$- 6 \left(\tilde x1 \sqrt{\frac{1}{2} - \frac{\sqrt{5}}{5}} + \tilde x2 \sqrt{\frac{\sqrt{5}}{5} + \frac{1}{2}}\right)^{2} + \left(\tilde x1 \sqrt{\frac{1}{2} - \frac{\sqrt{5}}{5}} + \tilde x2 \sqrt{\frac{\sqrt{5}}{5} + \frac{1}{2}}\right) \left(\tilde x1 \sqrt{\frac{\sqrt{5}}{5} + \frac{1}{2}} - \tilde x2 \sqrt{\frac{1}{2} - \frac{\sqrt{5}}{5}}\right) - 4 \left(\tilde x1 \sqrt{\frac{\sqrt{5}}{5} + \frac{1}{2}} - \tilde x2 \sqrt{\frac{1}{2} - \frac{\sqrt{5}}{5}}\right)^{2} = 0$$
simplificamos
$$- 5 \tilde x1^{2} + \tilde x1^{2} \sqrt{\frac{1}{2} - \frac{\sqrt{5}}{5}} \sqrt{\frac{\sqrt{5}}{5} + \frac{1}{2}} + \frac{2 \sqrt{5} \tilde x1^{2}}{5} - 4 \tilde x1 \tilde x2 \sqrt{\frac{1}{2} - \frac{\sqrt{5}}{5}} \sqrt{\frac{\sqrt{5}}{5} + \frac{1}{2}} + \frac{2 \sqrt{5} \tilde x1 \tilde x2}{5} - 5 \tilde x2^{2} - \frac{2 \sqrt{5} \tilde x2^{2}}{5} - \tilde x2^{2} \sqrt{\frac{1}{2} - \frac{\sqrt{5}}{5}} \sqrt{\frac{\sqrt{5}}{5} + \frac{1}{2}} = 0$$
$$- \frac{\sqrt{5} \tilde x1^{2}}{2} + 5 \tilde x1^{2} + \frac{\sqrt{5} \tilde x2^{2}}{2} + 5 \tilde x2^{2} = 0$$
Esta ecuación es una elipsis degenerada
$$\frac{\tilde x1^{2}}{\left(\frac{1}{\sqrt{5 - \frac{\sqrt{5}}{2}}}\right)^{2}} + \frac{\tilde x2^{2}}{\left(\frac{1}{\sqrt{\frac{\sqrt{5}}{2} + 5}}\right)^{2}} = 0$$
- está reducida a la forma canónica
Centro de las coordenadas canónicas en el punto O
(0, 0)

Base de las coordenadas canónicas
$$\vec e_1 = \left( \sqrt{\frac{\sqrt{5}}{5} + \frac{1}{2}}, \ - \sqrt{\frac{1}{2} - \frac{\sqrt{5}}{5}}\right)$$
$$\vec e_2 = \left( \sqrt{\frac{1}{2} - \frac{\sqrt{5}}{5}}, \ \sqrt{\frac{\sqrt{5}}{5} + \frac{1}{2}}\right)$$
Método de invariantes
Se da la ecuación de la línea de 2-o orden:
$$- 4 x_{1}^{2} + x_{1} x_{2} - 6 x_{2}^{2} = 0$$
Esta ecuación tiene la forma:
$$a_{11} x_{2}^{2} + 2 a_{12} x_{1} x_{2} + 2 a_{13} x_{2} + a_{22} x_{1}^{2} + 2 a_{23} x_{1} + a_{33} = 0$$
donde
$$a_{11} = -6$$
$$a_{12} = \frac{1}{2}$$
$$a_{13} = 0$$
$$a_{22} = -4$$
$$a_{23} = 0$$
$$a_{33} = 0$$
Las invariantes de esta ecuación al transformar las coordenadas son los determinantes:
$$I_{1} = a_{11} + a_{22}$$
     |a11  a12|
I2 = |        |
     |a12  a22|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|$$
     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

sustituimos coeficientes
$$I_{1} = -10$$
     |-6   1/2|
I2 = |        |
     |1/2  -4 |

$$I_{3} = \left|\begin{matrix}-6 & \frac{1}{2} & 0\\\frac{1}{2} & -4 & 0\\0 & 0 & 0\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda - 6 & \frac{1}{2}\\\frac{1}{2} & - \lambda - 4\end{matrix}\right|$$
     |-6  0|   |-4  0|
K2 = |     | + |     |
     |0   0|   |0   0|

$$I_{1} = -10$$
$$I_{2} = \frac{95}{4}$$
$$I_{3} = 0$$
$$I{\left(\lambda \right)} = \lambda^{2} + 10 \lambda + \frac{95}{4}$$
$$K_{2} = 0$$
Como
$$I_{3} = 0 \wedge I_{2} > 0$$
entonces por razón de tipos de rectas:
esta ecuación tiene el tipo : elipsis degenerada
Formulamos la ecuación característica para nuestra línea:
$$- I_{1} \lambda + I_{2} + \lambda^{2} = 0$$
o
$$\lambda^{2} + 10 \lambda + \frac{95}{4} = 0$$
$$\lambda_{1} = -5 - \frac{\sqrt{5}}{2}$$
$$\lambda_{2} = -5 + \frac{\sqrt{5}}{2}$$
entonces la forma canónica de la ecuación será
$$\tilde x1^{2} \lambda_{2} + \tilde x2^{2} \lambda_{1} + \frac{I_{3}}{I_{2}} = 0$$
o
$$\tilde x1^{2} \left(-5 + \frac{\sqrt{5}}{2}\right) + \tilde x2^{2} \left(-5 - \frac{\sqrt{5}}{2}\right) = 0$$
$$\frac{\tilde x1^{2}}{\left(\frac{1}{\sqrt{5 - \frac{\sqrt{5}}{2}}}\right)^{2}} + \frac{\tilde x2^{2}}{\left(\frac{1}{\sqrt{\frac{\sqrt{5}}{2} + 5}}\right)^{2}} = 0$$
- está reducida a la forma canónica