Sr Examen

Otras calculadoras

4y^2+15z^2-10/2^(1/2)x+6/6^(1/2)y+3=0 forma canónica

El profesor se sorprenderá mucho al ver tu solución correcta😉

v

Gráfico:

x: [, ]
y: [, ]
z: [, ]

Calidad:

 (Cantidad de puntos en el eje)

Tipo de trazado:

Solución

Ha introducido [src]
           2       2       ___    
3 + y + 4*y  + 15*z  - x*\/ 5  = 0
$$- \sqrt{5} x + 4 y^{2} + y + 15 z^{2} + 3 = 0$$
-sqrt(5)*x + 4*y^2 + y + 15*z^2 + 3 = 0
Método de invariantes
Se da la ecuación de superficie de 2 grado:
$$- \sqrt{5} x + 4 y^{2} + y + 15 z^{2} + 3 = 0$$
Esta ecuación tiene la forma:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x z + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} y z + 2 a_{24} y + a_{33} z^{2} + 2 a_{34} z + a_{44} = 0$$
donde
$$a_{11} = 0$$
$$a_{12} = 0$$
$$a_{13} = 0$$
$$a_{14} = - \frac{\sqrt{5}}{2}$$
$$a_{22} = 4$$
$$a_{23} = 0$$
$$a_{24} = \frac{1}{2}$$
$$a_{33} = 15$$
$$a_{34} = 0$$
$$a_{44} = 3$$
Las invariantes de esta ecuación al transformar las coordenadas son los determinantes:
$$I_{1} = a_{11} + a_{22} + a_{33}$$
     |a11  a12|   |a22  a23|   |a11  a13|
I2 = |        | + |        | + |        |
     |a12  a22|   |a23  a33|   |a13  a33|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|$$
     |a11  a14|   |a22  a24|   |a33  a34|
K2 = |        | + |        | + |        |
     |a14  a44|   |a24  a44|   |a34  a44|

     |a11  a12  a14|   |a22  a23  a24|   |a11  a13  a14|
     |             |   |             |   |             |
K3 = |a12  a22  a24| + |a23  a33  a34| + |a13  a33  a34|
     |             |   |             |   |             |
     |a14  a24  a44|   |a24  a34  a44|   |a14  a34  a44|

sustituimos coeficientes
$$I_{1} = 19$$
     |0  0|   |4  0 |   |0  0 |
I2 = |    | + |     | + |     |
     |0  4|   |0  15|   |0  15|

$$I_{3} = \left|\begin{matrix}0 & 0 & 0\\0 & 4 & 0\\0 & 0 & 15\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}0 & 0 & 0 & - \frac{\sqrt{5}}{2}\\0 & 4 & 0 & \frac{1}{2}\\0 & 0 & 15 & 0\\- \frac{\sqrt{5}}{2} & \frac{1}{2} & 0 & 3\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & 0 & 0\\0 & 4 - \lambda & 0\\0 & 0 & 15 - \lambda\end{matrix}\right|$$
     |            ___ |                       
     |         -\/ 5  |                       
     |   0     -------|                       
     |            2   |   | 4   1/2|   |15  0|
K2 = |                | + |        | + |     |
     |   ___          |   |1/2   3 |   |0   3|
     |-\/ 5           |                       
     |-------     3   |                       
     |   2            |                       

     |                 ___ |                    |                ___ |
     |              -\/ 5  |                    |             -\/ 5  |
     |   0      0   -------|                    |   0     0   -------|
     |                 2   |   | 4   0   1/2|   |                2   |
     |                     |   |            |   |                    |
K3 = |   0      4     1/2  | + | 0   15   0 | + |   0     15     0   |
     |                     |   |            |   |                    |
     |   ___               |   |1/2  0    3 |   |   ___              |
     |-\/ 5                |                    |-\/ 5               |
     |-------  1/2     3   |                    |-------  0      3   |
     |   2                 |                    |   2                |

$$I_{1} = 19$$
$$I_{2} = 60$$
$$I_{3} = 0$$
$$I_{4} = -75$$
$$I{\left(\lambda \right)} = - \lambda^{3} + 19 \lambda^{2} - 60 \lambda$$
$$K_{2} = \frac{111}{2}$$
$$K_{3} = \frac{305}{2}$$
Como
$$I_{3} = 0 \wedge I_{2} \neq 0 \wedge I_{4} \neq 0$$
entonces por razón de tipos de rectas:
hay que
Formulamos la ecuación característica para nuestra superficie:
$$- I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0$$
o
$$\lambda^{3} - 19 \lambda^{2} + 60 \lambda = 0$$
$$\lambda_{1} = 15$$
$$\lambda_{2} = 4$$
$$\lambda_{3} = 0$$
entonces la forma canónica de la ecuación será
$$\tilde z 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0$$
y
$$- \tilde z 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0$$
$$15 \tilde x^{2} + 4 \tilde y^{2} + \sqrt{5} \tilde z = 0$$
y
$$15 \tilde x^{2} + 4 \tilde y^{2} - \sqrt{5} \tilde z = 0$$
$$2 \tilde z + \left(\frac{\tilde x^{2}}{\frac{1}{30} \sqrt{5}} + \frac{\tilde y^{2}}{\frac{1}{8} \sqrt{5}}\right) = 0$$
y
$$- 2 \tilde z + \left(\frac{\tilde x^{2}}{\frac{1}{30} \sqrt{5}} + \frac{\tilde y^{2}}{\frac{1}{8} \sqrt{5}}\right) = 0$$
es la ecuación para el tipo paraboloide elíptico
- está reducida a la forma canónica