Sr Examen

3x+9y+8xy forma canónica

El profesor se sorprenderá mucho al ver tu solución correcta😉

v

Gráfico:

x: [, ]
y: [, ]
z: [, ]

Calidad:

 (Cantidad de puntos en el eje)

Tipo de trazado:

Solución

Ha introducido [src]
3*x + 9*y + 8*x*y = 0
$$8 x y + 3 x + 9 y = 0$$
8*x*y + 3*x + 9*y = 0
Solución detallada
Se da la ecuación de la línea de 2-o orden:
$$8 x y + 3 x + 9 y = 0$$
Esta ecuación tiene la forma:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
donde
$$a_{11} = 0$$
$$a_{12} = 4$$
$$a_{13} = \frac{3}{2}$$
$$a_{22} = 0$$
$$a_{23} = \frac{9}{2}$$
$$a_{33} = 0$$
Calculemos el determinante
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
o, sustituimos
$$\Delta = \left|\begin{matrix}0 & 4\\4 & 0\end{matrix}\right|$$
$$\Delta = -16$$
Como
$$\Delta$$
no es igual a 0, entonces
hallamos el centro de coordenadas canónicas. Para eso resolvemos el sistema de ecuaciones
$$a_{11} x_{0} + a_{12} y_{0} + a_{13} = 0$$
$$a_{12} x_{0} + a_{22} y_{0} + a_{23} = 0$$
sustituimos coeficientes
$$4 y_{0} + \frac{3}{2} = 0$$
$$4 x_{0} + \frac{9}{2} = 0$$
entonces
$$x_{0} = - \frac{9}{8}$$
$$y_{0} = - \frac{3}{8}$$
Así pasamos a la ecuación en el sistema de coordenadas O'x'y'
$$a'_{33} + a_{11} x'^{2} + 2 a_{12} x' y' + a_{22} y'^{2} = 0$$
donde
$$a'_{33} = a_{13} x_{0} + a_{23} y_{0} + a_{33}$$
o
$$a'_{33} = \frac{3 x_{0}}{2} + \frac{9 y_{0}}{2}$$
$$a'_{33} = - \frac{27}{8}$$
entonces la ecuación se transformará en
$$8 x' y' - \frac{27}{8} = 0$$
Hacemos el giro del sistema de coordenadas obtenido al ángulo de φ
$$x' = \tilde x \cos{\left(\phi \right)} - \tilde y \sin{\left(\phi \right)}$$
$$y' = \tilde x \sin{\left(\phi \right)} + \tilde y \cos{\left(\phi \right)}$$
φ - se define de la fórmula
$$\cot{\left(2 \phi \right)} = \frac{a_{11} - a_{22}}{2 a_{12}}$$
sustituimos coeficientes
$$\cot{\left(2 \phi \right)} = 0$$
entonces
$$\phi = \frac{\pi}{4}$$
$$\sin{\left(2 \phi \right)} = 1$$
$$\cos{\left(2 \phi \right)} = 0$$
$$\cos{\left(\phi \right)} = \sqrt{\frac{\cos{\left(2 \phi \right)}}{2} + \frac{1}{2}}$$
$$\sin{\left(\phi \right)} = \sqrt{1 - \cos^{2}{\left(\phi \right)}}$$
$$\cos{\left(\phi \right)} = \frac{\sqrt{2}}{2}$$
$$\sin{\left(\phi \right)} = \frac{\sqrt{2}}{2}$$
sustituimos coeficientes
$$x' = \frac{\sqrt{2} \tilde x}{2} - \frac{\sqrt{2} \tilde y}{2}$$
$$y' = \frac{\sqrt{2} \tilde x}{2} + \frac{\sqrt{2} \tilde y}{2}$$
entonces la ecuación se transformará de
$$8 x' y' - \frac{27}{8} = 0$$
en
$$8 \left(\frac{\sqrt{2} \tilde x}{2} - \frac{\sqrt{2} \tilde y}{2}\right) \left(\frac{\sqrt{2} \tilde x}{2} + \frac{\sqrt{2} \tilde y}{2}\right) - \frac{27}{8} = 0$$
simplificamos
$$4 \tilde x^{2} - 4 \tilde y^{2} - \frac{27}{8} = 0$$
$$- 4 \tilde x^{2} + 4 \tilde y^{2} + \frac{27}{8} = 0$$
Esta ecuación es una hipérbola
$$\frac{\tilde x^{2}}{\frac{27}{32}} - \frac{\tilde y^{2}}{\frac{27}{32}} = 1$$
- está reducida a la forma canónica
Centro de las coordenadas canónicas en el punto O
(-9/8, -3/8)

Base de las coordenadas canónicas
$$\vec e_1 = \left( \frac{\sqrt{2}}{2}, \ \frac{\sqrt{2}}{2}\right)$$
$$\vec e_2 = \left( - \frac{\sqrt{2}}{2}, \ \frac{\sqrt{2}}{2}\right)$$
Método de invariantes
Se da la ecuación de la línea de 2-o orden:
$$8 x y + 3 x + 9 y = 0$$
Esta ecuación tiene la forma:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
donde
$$a_{11} = 0$$
$$a_{12} = 4$$
$$a_{13} = \frac{3}{2}$$
$$a_{22} = 0$$
$$a_{23} = \frac{9}{2}$$
$$a_{33} = 0$$
Las invariantes de esta ecuación al transformar las coordenadas son los determinantes:
$$I_{1} = a_{11} + a_{22}$$
     |a11  a12|
I2 = |        |
     |a12  a22|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|$$
     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

sustituimos coeficientes
$$I_{1} = 0$$
     |0  4|
I2 = |    |
     |4  0|

$$I_{3} = \left|\begin{matrix}0 & 4 & \frac{3}{2}\\4 & 0 & \frac{9}{2}\\\frac{3}{2} & \frac{9}{2} & 0\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & 4\\4 & - \lambda\end{matrix}\right|$$
     | 0   3/2|   | 0   9/2|
K2 = |        | + |        |
     |3/2   0 |   |9/2   0 |

$$I_{1} = 0$$
$$I_{2} = -16$$
$$I_{3} = 54$$
$$I{\left(\lambda \right)} = \lambda^{2} - 16$$
$$K_{2} = - \frac{45}{2}$$
Como
$$I_{2} < 0 \wedge I_{3} \neq 0$$
entonces por razón de tipos de rectas:
esta ecuación tiene el tipo : hipérbola
Formulamos la ecuación característica para nuestra línea:
$$- I_{1} \lambda + I_{2} + \lambda^{2} = 0$$
o
$$\lambda^{2} - 16 = 0$$
$$\lambda_{1} = -4$$
$$\lambda_{2} = 4$$
entonces la forma canónica de la ecuación será
$$\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2} + \frac{I_{3}}{I_{2}} = 0$$
o
$$- 4 \tilde x^{2} + 4 \tilde y^{2} - \frac{27}{8} = 0$$
$$\frac{\tilde x^{2}}{\frac{27}{32}} - \frac{\tilde y^{2}}{\frac{27}{32}} = -1$$
- está reducida a la forma canónica