Sr Examen

Otras calculadoras

y^2-z^2+2*x+(z-y)^2=0 forma canónica

El profesor se sorprenderá mucho al ver tu solución correcta😉

v

Gráfico:

x: [, ]
y: [, ]
z: [, ]

Calidad:

 (Cantidad de puntos en el eje)

Tipo de trazado:

Solución

Ha introducido [src]
 2          2    2          
y  + (z - y)  - z  + 2*x = 0
2x+y2z2+(y+z)2=02 x + y^{2} - z^{2} + \left(- y + z\right)^{2} = 0
2*x + y^2 - z^2 + (-y + z)^2 = 0
Método de invariantes
Se da la ecuación de superficie de 2 grado:
2x+y2z2+(y+z)2=02 x + y^{2} - z^{2} + \left(- y + z\right)^{2} = 0
Esta ecuación tiene la forma:
a11x2+2a12xy+2a13xz+2a14x+a22y2+2a23yz+2a24y+a33z2+2a34z+a44=0a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x z + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} y z + 2 a_{24} y + a_{33} z^{2} + 2 a_{34} z + a_{44} = 0
donde
a11=0a_{11} = 0
a12=0a_{12} = 0
a13=0a_{13} = 0
a14=1a_{14} = 1
a22=2a_{22} = 2
a23=1a_{23} = -1
a24=0a_{24} = 0
a33=0a_{33} = 0
a34=0a_{34} = 0
a44=0a_{44} = 0
Las invariantes de esta ecuación al transformar las coordenadas son los determinantes:
I1=a11+a22+a33I_{1} = a_{11} + a_{22} + a_{33}
     |a11  a12|   |a22  a23|   |a11  a13|
I2 = |        | + |        | + |        |
     |a12  a22|   |a23  a33|   |a13  a33|

I3=a11a12a13a12a22a23a13a23a33I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|
I4=a11a12a13a14a12a22a23a24a13a23a33a34a14a24a34a44I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|
I(λ)=a11λa12a13a12a22λa23a13a23a33λI{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|
     |a11  a14|   |a22  a24|   |a33  a34|
K2 = |        | + |        | + |        |
     |a14  a44|   |a24  a44|   |a34  a44|

     |a11  a12  a14|   |a22  a23  a24|   |a11  a13  a14|
     |             |   |             |   |             |
K3 = |a12  a22  a24| + |a23  a33  a34| + |a13  a33  a34|
     |             |   |             |   |             |
     |a14  a24  a44|   |a24  a34  a44|   |a14  a34  a44|

sustituimos coeficientes
I1=2I_{1} = 2
     |0  0|   |2   -1|   |0  0|
I2 = |    | + |      | + |    |
     |0  2|   |-1  0 |   |0  0|

I3=000021010I_{3} = \left|\begin{matrix}0 & 0 & 0\\0 & 2 & -1\\0 & -1 & 0\end{matrix}\right|
I4=0001021001001000I_{4} = \left|\begin{matrix}0 & 0 & 0 & 1\\0 & 2 & -1 & 0\\0 & -1 & 0 & 0\\1 & 0 & 0 & 0\end{matrix}\right|
I(λ)=λ0002λ101λI{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & 0 & 0\\0 & 2 - \lambda & -1\\0 & -1 & - \lambda\end{matrix}\right|
     |0  1|   |2  0|   |0  0|
K2 = |    | + |    | + |    |
     |1  0|   |0  0|   |0  0|

     |0  0  1|   |2   -1  0|   |0  0  1|
     |       |   |         |   |       |
K3 = |0  2  0| + |-1  0   0| + |0  0  0|
     |       |   |         |   |       |
     |1  0  0|   |0   0   0|   |1  0  0|

I1=2I_{1} = 2
I2=1I_{2} = -1
I3=0I_{3} = 0
I4=1I_{4} = 1
I(λ)=λ3+2λ2+λI{\left(\lambda \right)} = - \lambda^{3} + 2 \lambda^{2} + \lambda
K2=1K_{2} = -1
K3=2K_{3} = -2
Como
I3=0I20I40I_{3} = 0 \wedge I_{2} \neq 0 \wedge I_{4} \neq 0
entonces por razón de tipos de rectas:
hay que
Formulamos la ecuación característica para nuestra superficie:
I1λ2+I2λI3+λ3=0- I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0
o
λ32λ2λ=0\lambda^{3} - 2 \lambda^{2} - \lambda = 0
λ1=12\lambda_{1} = 1 - \sqrt{2}
λ2=1+2\lambda_{2} = 1 + \sqrt{2}
λ3=0\lambda_{3} = 0
entonces la forma canónica de la ecuación será
z~2(1)I4I2+(x~2λ1+y~2λ2)=0\tilde z 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0
y
z~2(1)I4I2+(x~2λ1+y~2λ2)=0- \tilde z 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0
x~2(12)+y~2(1+2)+2z~=0\tilde x^{2} \left(1 - \sqrt{2}\right) + \tilde y^{2} \left(1 + \sqrt{2}\right) + 2 \tilde z = 0
y
x~2(12)+y~2(1+2)2z~=0\tilde x^{2} \left(1 - \sqrt{2}\right) + \tilde y^{2} \left(1 + \sqrt{2}\right) - 2 \tilde z = 0
2z~+(x~211+2y~211+2)=0- 2 \tilde z + \left(\frac{\tilde x^{2}}{\frac{1}{-1 + \sqrt{2}}} - \frac{\tilde y^{2}}{\frac{1}{1 + \sqrt{2}}}\right) = 0
y
2z~+(x~211+2y~211+2)=02 \tilde z + \left(\frac{\tilde x^{2}}{\frac{1}{-1 + \sqrt{2}}} - \frac{\tilde y^{2}}{\frac{1}{1 + \sqrt{2}}}\right) = 0
es la ecuación para el tipo paraboloide hiperbólico
- está reducida a la forma canónica