Sr Examen

Otras calculadoras

1/(87/10)+(1/50)/(19/25)+(19/50)/(7/10)+x/(41/1000)+1/(54/5) forma canónica

El profesor se sorprenderá mucho al ver tu solución correcta😉

v

Gráfico:

x: [, ]
y: [, ]
z: [, ]

Calidad:

 (Cantidad de puntos en el eje)

Tipo de trazado:

Solución

Ha introducido [src]
404428   1000*x    
------ + ------ = 0
520695     41      
$$\frac{1000 x}{41} + \frac{404428}{520695} = 0$$
1000*x/41 + 404428/520695 = 0
Solución detallada
Se da la ecuación de la línea de 2-o orden:
$$\frac{1000 x}{41} + \frac{404428}{520695} = 0$$
Esta ecuación tiene la forma:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
donde
$$a_{11} = 0$$
$$a_{12} = 0$$
$$a_{13} = \frac{500}{41}$$
$$a_{22} = 0$$
$$a_{23} = 0$$
$$a_{33} = \frac{404428}{520695}$$
Calculemos el determinante
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
o, sustituimos
$$\Delta = \left|\begin{matrix}0 & 0\\0 & 0\end{matrix}\right|$$
$$\Delta = 0$$
Como
$$\Delta$$
es igual a 0, entonces
Esta ecuación es con línea recta
- está reducida a la forma canónica
Centro de las coordenadas canónicas en Oxy
$$x_{0} = \tilde x \cos{\left(\phi \right)} - \tilde y \sin{\left(\phi \right)}$$
$$y_{0} = \tilde x \sin{\left(\phi \right)} + \tilde y \cos{\left(\phi \right)}$$
$$x_{0} = 0 \cdot 0$$
$$y_{0} = 0 \cdot 0$$
$$x_{0} = 0$$
$$y_{0} = 0$$
Centro de las coordenadas canónicas en el punto O
(0, 0)

Base de las coordenadas canónicas
$$\vec e_1 = \left( 1, \ 0\right)$$
$$\vec e_2 = \left( 0, \ 1\right)$$
Método de invariantes
Se da la ecuación de la línea de 2-o orden:
$$\frac{1000 x}{41} + \frac{404428}{520695} = 0$$
Esta ecuación tiene la forma:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
donde
$$a_{11} = 0$$
$$a_{12} = 0$$
$$a_{13} = \frac{500}{41}$$
$$a_{22} = 0$$
$$a_{23} = 0$$
$$a_{33} = \frac{404428}{520695}$$
Las invariantes de esta ecuación al transformar las coordenadas son los determinantes:
$$I_{1} = a_{11} + a_{22}$$
     |a11  a12|
I2 = |        |
     |a12  a22|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|$$
     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

sustituimos coeficientes
$$I_{1} = 0$$
     |0  0|
I2 = |    |
     |0  0|

$$I_{3} = \left|\begin{matrix}0 & 0 & \frac{500}{41}\\0 & 0 & 0\\\frac{500}{41} & 0 & \frac{404428}{520695}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & 0\\0 & - \lambda\end{matrix}\right|$$
     |      500  |              
     | 0    ---  |   |0    0   |
     |       41  |   |         |
K2 = |           | + |   404428|
     |500  404428|   |0  ------|
     |---  ------|   |   520695|
     | 41  520695|              

$$I_{1} = 0$$
$$I_{2} = 0$$
$$I_{3} = 0$$
$$I{\left(\lambda \right)} = \lambda^{2}$$
$$K_{2} = - \frac{250000}{1681}$$
Como
$$I_{2} = 0 \wedge I_{3} = 0 \wedge \left(I_{1} = 0 \vee K_{2} = 0\right)$$
entonces por razón de tipos de rectas:
esta ecuación tiene el tipo : dos rectos coincidentes
$$I_{1} \tilde y^{2} + \frac{K_{2}}{I_{1}} = 0$$
o
False

None

- está reducida a la forma canónica