Sr Examen

Otras calculadoras

x^2/6-y^2/3+z^2/24=-1 forma canónica

El profesor se sorprenderá mucho al ver tu solución correcta😉

v

Gráfico:

x: [, ]
y: [, ]
z: [, ]

Calidad:

 (Cantidad de puntos en el eje)

Tipo de trazado:

Solución

Ha introducido [src]
     2    2    2    
    y    x    z     
1 - -- + -- + -- = 0
    3    6    24    
$$\frac{x^{2}}{6} - \frac{y^{2}}{3} + \frac{z^{2}}{24} + 1 = 0$$
x^2/6 - y^2/3 + z^2/24 + 1 = 0
Método de invariantes
Se da la ecuación de superficie de 2 grado:
$$\frac{x^{2}}{6} - \frac{y^{2}}{3} + \frac{z^{2}}{24} + 1 = 0$$
Esta ecuación tiene la forma:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x z + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} y z + 2 a_{24} y + a_{33} z^{2} + 2 a_{34} z + a_{44} = 0$$
donde
$$a_{11} = \frac{1}{6}$$
$$a_{12} = 0$$
$$a_{13} = 0$$
$$a_{14} = 0$$
$$a_{22} = - \frac{1}{3}$$
$$a_{23} = 0$$
$$a_{24} = 0$$
$$a_{33} = \frac{1}{24}$$
$$a_{34} = 0$$
$$a_{44} = 1$$
Las invariantes de esta ecuación al transformar las coordenadas son los determinantes:
$$I_{1} = a_{11} + a_{22} + a_{33}$$
     |a11  a12|   |a22  a23|   |a11  a13|
I2 = |        | + |        | + |        |
     |a12  a22|   |a23  a33|   |a13  a33|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|$$
     |a11  a14|   |a22  a24|   |a33  a34|
K2 = |        | + |        | + |        |
     |a14  a44|   |a24  a44|   |a34  a44|

     |a11  a12  a14|   |a22  a23  a24|   |a11  a13  a14|
     |             |   |             |   |             |
K3 = |a12  a22  a24| + |a23  a33  a34| + |a13  a33  a34|
     |             |   |             |   |             |
     |a14  a24  a44|   |a24  a34  a44|   |a14  a34  a44|

sustituimos coeficientes
$$I_{1} = - \frac{1}{8}$$
     |1/6   0  |   |-1/3   0  |   |1/6   0  |
I2 = |         | + |          | + |         |
     | 0   -1/3|   | 0    1/24|   | 0   1/24|

$$I_{3} = \left|\begin{matrix}\frac{1}{6} & 0 & 0\\0 & - \frac{1}{3} & 0\\0 & 0 & \frac{1}{24}\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}\frac{1}{6} & 0 & 0 & 0\\0 & - \frac{1}{3} & 0 & 0\\0 & 0 & \frac{1}{24} & 0\\0 & 0 & 0 & 1\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}\frac{1}{6} - \lambda & 0 & 0\\0 & - \lambda - \frac{1}{3} & 0\\0 & 0 & \frac{1}{24} - \lambda\end{matrix}\right|$$
     |1/6  0|   |-1/3  0|   |1/24  0|
K2 = |      | + |       | + |       |
     | 0   1|   | 0    1|   | 0    1|

     |1/6   0    0|   |-1/3   0    0|   |1/6   0    0|
     |            |   |             |   |            |
K3 = | 0   -1/3  0| + | 0    1/24  0| + | 0   1/24  0|
     |            |   |             |   |            |
     | 0    0    1|   | 0     0    1|   | 0    0    1|

$$I_{1} = - \frac{1}{8}$$
$$I_{2} = - \frac{1}{16}$$
$$I_{3} = - \frac{1}{432}$$
$$I_{4} = - \frac{1}{432}$$
$$I{\left(\lambda \right)} = - \lambda^{3} - \frac{\lambda^{2}}{8} + \frac{\lambda}{16} - \frac{1}{432}$$
$$K_{2} = - \frac{1}{8}$$
$$K_{3} = - \frac{1}{16}$$
Como
I3 != 0

entonces por razón de tipos de rectas:
hay que
Formulamos la ecuación característica para nuestra superficie:
$$- I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0$$
o
$$\lambda^{3} + \frac{\lambda^{2}}{8} - \frac{\lambda}{16} + \frac{1}{432} = 0$$
$$\lambda_{1} = - \frac{1}{3}$$
$$\lambda_{2} = \frac{1}{6}$$
$$\lambda_{3} = \frac{1}{24}$$
entonces la forma canónica de la ecuación será
$$\left(\tilde z^{2} \lambda_{3} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right)\right) + \frac{I_{4}}{I_{3}} = 0$$
$$- \frac{\tilde x^{2}}{3} + \frac{\tilde y^{2}}{6} + \frac{\tilde z^{2}}{24} + 1 = 0$$
$$- \frac{\tilde x^{2}}{\left(\frac{\sqrt{3}}{1}\right)^{2}} + \left(\frac{\tilde y^{2}}{\left(\frac{\sqrt{6}}{1}\right)^{2}} + \frac{\tilde z^{2}}{\left(\frac{2 \sqrt{6}}{1}\right)^{2}}\right) = -1$$
es la ecuación para el tipo hiperboloide bilateral
- está reducida a la forma canónica