Se da la ecuación de la línea de 2-o orden:
$$9 x^{2} + 6 x y + 12 \sqrt{10} x + y^{2} + 4 \sqrt{10} y + 30 = 0$$
Esta ecuación tiene la forma:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
donde
$$a_{11} = 9$$
$$a_{12} = 3$$
$$a_{13} = 6 \sqrt{10}$$
$$a_{22} = 1$$
$$a_{23} = 2 \sqrt{10}$$
$$a_{33} = 30$$
Calculemos el determinante
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
o, sustituimos
$$\Delta = \left|\begin{matrix}9 & 3\\3 & 1\end{matrix}\right|$$
$$\Delta = 0$$
Como
$$\Delta$$
es igual a 0, entonces
Hacemos el giro del sistema de coordenadas obtenido al ángulo de φ
$$x' = \tilde x \cos{\left(\phi \right)} - \tilde y \sin{\left(\phi \right)}$$
$$y' = \tilde x \sin{\left(\phi \right)} + \tilde y \cos{\left(\phi \right)}$$
φ - se define de la fórmula
$$\cot{\left(2 \phi \right)} = \frac{a_{11} - a_{22}}{2 a_{12}}$$
sustituimos coeficientes
$$\cot{\left(2 \phi \right)} = \frac{4}{3}$$
entonces
$$\phi = \frac{\operatorname{acot}{\left(\frac{4}{3} \right)}}{2}$$
$$\sin{\left(2 \phi \right)} = \frac{3}{5}$$
$$\cos{\left(2 \phi \right)} = \frac{4}{5}$$
$$\cos{\left(\phi \right)} = \sqrt{\frac{\cos{\left(2 \phi \right)}}{2} + \frac{1}{2}}$$
$$\sin{\left(\phi \right)} = \sqrt{1 - \cos^{2}{\left(\phi \right)}}$$
$$\cos{\left(\phi \right)} = \frac{3 \sqrt{10}}{10}$$
$$\sin{\left(\phi \right)} = \frac{\sqrt{10}}{10}$$
sustituimos coeficientes
$$x' = \frac{3 \sqrt{10} \tilde x}{10} - \frac{\sqrt{10} \tilde y}{10}$$
$$y' = \frac{\sqrt{10} \tilde x}{10} + \frac{3 \sqrt{10} \tilde y}{10}$$
entonces la ecuación se transformará de
$$9 x'^{2} + 6 x' y' + 12 \sqrt{10} x' + y'^{2} + 4 \sqrt{10} y' + 30 = 0$$
en
$$\left(\frac{\sqrt{10} \tilde x}{10} + \frac{3 \sqrt{10} \tilde y}{10}\right)^{2} + 6 \left(\frac{\sqrt{10} \tilde x}{10} + \frac{3 \sqrt{10} \tilde y}{10}\right) \left(\frac{3 \sqrt{10} \tilde x}{10} - \frac{\sqrt{10} \tilde y}{10}\right) + 4 \sqrt{10} \left(\frac{\sqrt{10} \tilde x}{10} + \frac{3 \sqrt{10} \tilde y}{10}\right) + 9 \left(\frac{3 \sqrt{10} \tilde x}{10} - \frac{\sqrt{10} \tilde y}{10}\right)^{2} + 12 \sqrt{10} \left(\frac{3 \sqrt{10} \tilde x}{10} - \frac{\sqrt{10} \tilde y}{10}\right) + 30 = 0$$
simplificamos
$$10 \tilde x^{2} + 40 \tilde x + 30 = 0$$
$$\tilde x^{2} + 4 \tilde x = -3$$
$$\left(\tilde x + 2\right)^{2} = 4$$
$$\tilde x'^{2} = 4$$
Esta ecuación es dos rectas paralelas
- está reducida a la forma canónica
donde se ha hecho la sustitución
$$\tilde x' = \tilde x + 2$$
$$\tilde y' = \tilde y$$
Centro de las coordenadas canónicas en Oxy
$$x_{0} = \tilde x \cos{\left(\phi \right)} - \tilde y \sin{\left(\phi \right)}$$
$$y_{0} = \tilde x \sin{\left(\phi \right)} + \tilde y \cos{\left(\phi \right)}$$
$$x_{0} = - 2 \frac{3 \sqrt{10}}{10} + 0 \frac{\sqrt{10}}{10}$$
$$y_{0} = - 2 \frac{\sqrt{10}}{10} + 0 \frac{3 \sqrt{10}}{10}$$
$$x_{0} = - \frac{3 \sqrt{10}}{5}$$
$$y_{0} = - \frac{\sqrt{10}}{5}$$
Centro de las coordenadas canónicas en el punto O
____ ____
-3*\/ 10 -\/ 10
(---------, --------)
5 5
Base de las coordenadas canónicas
$$\vec e_1 = \left( \frac{3 \sqrt{10}}{10}, \ \frac{\sqrt{10}}{10}\right)$$
$$\vec e_2 = \left( - \frac{\sqrt{10}}{10}, \ \frac{3 \sqrt{10}}{10}\right)$$