Tenemos la ecuación
$$9 a + \left(- \left(2 a + 9\right) \cos{\left(x \right)} + 2 \cos^{2}{\left(x \right)}\right) = 0$$
cambiamos
$$9 a - \left(2 a + 9\right) \cos{\left(x \right)} + 2 \cos^{2}{\left(x \right)} = 0$$
$$9 a + \left(- \left(2 a + 9\right) \cos{\left(x \right)} + 2 \cos^{2}{\left(x \right)}\right) = 0$$
Sustituimos
$$w = \cos{\left(x \right)}$$
Abramos la expresión en la ecuación
$$9 a + 2 w^{2} - w \left(2 a + 9\right) = 0$$
Obtenemos la ecuación cuadrática
$$- 2 a w + 9 a + 2 w^{2} - 9 w = 0$$
Es la ecuación de la forma
a*w^2 + b*w + c = 0
La ecuación cuadrática puede ser resuelta
con la ayuda del discriminante.
Las raíces de la ecuación cuadrática:
$$w_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$w_{2} = \frac{- \sqrt{D} - b}{2 a}$$
donde D = b^2 - 4*a*c es el discriminante.
Como
$$a = 2$$
$$b = - 2 a - 9$$
$$c = 9 a$$
, entonces
D = b^2 - 4 * a * c =
(-9 - 2*a)^2 - 4 * (2) * (9*a) = (-9 - 2*a)^2 - 72*a
La ecuación tiene dos raíces.
w1 = (-b + sqrt(D)) / (2*a)
w2 = (-b - sqrt(D)) / (2*a)
o
$$w_{1} = \frac{a}{2} + \frac{\sqrt{- 72 a + \left(- 2 a - 9\right)^{2}}}{4} + \frac{9}{4}$$
$$w_{2} = \frac{a}{2} - \frac{\sqrt{- 72 a + \left(- 2 a - 9\right)^{2}}}{4} + \frac{9}{4}$$
hacemos cambio inverso
$$\cos{\left(x \right)} = w$$
Tenemos la ecuación
$$\cos{\left(x \right)} = w$$
es la ecuación trigonométrica más simple
Esta ecuación se reorganiza en
$$x = \pi n + \operatorname{acos}{\left(w \right)}$$
$$x = \pi n + \operatorname{acos}{\left(w \right)} - \pi$$
O
$$x = \pi n + \operatorname{acos}{\left(w \right)}$$
$$x = \pi n + \operatorname{acos}{\left(w \right)} - \pi$$
, donde n es cualquier número entero
sustituimos w:
$$x_{1} = \pi n + \operatorname{acos}{\left(w_{1} \right)}$$
$$x_{1} = \pi n + \operatorname{acos}{\left(\frac{a}{2} + \frac{\sqrt{- 72 a + \left(- 2 a - 9\right)^{2}}}{4} + \frac{9}{4} \right)}$$
$$x_{1} = \pi n + \operatorname{acos}{\left(\frac{a}{2} + \frac{\sqrt{- 72 a + \left(- 2 a - 9\right)^{2}}}{4} + \frac{9}{4} \right)}$$
$$x_{2} = \pi n + \operatorname{acos}{\left(w_{2} \right)}$$
$$x_{2} = \pi n + \operatorname{acos}{\left(\frac{a}{2} - \frac{\sqrt{- 72 a + \left(- 2 a - 9\right)^{2}}}{4} + \frac{9}{4} \right)}$$
$$x_{2} = \pi n + \operatorname{acos}{\left(\frac{a}{2} - \frac{\sqrt{- 72 a + \left(- 2 a - 9\right)^{2}}}{4} + \frac{9}{4} \right)}$$
$$x_{3} = \pi n + \operatorname{acos}{\left(w_{1} \right)} - \pi$$
$$x_{3} = \pi n + \operatorname{acos}{\left(\frac{a}{2} + \frac{\sqrt{- 72 a + \left(- 2 a - 9\right)^{2}}}{4} + \frac{9}{4} \right)} - \pi$$
$$x_{3} = \pi n + \operatorname{acos}{\left(\frac{a}{2} + \frac{\sqrt{- 72 a + \left(- 2 a - 9\right)^{2}}}{4} + \frac{9}{4} \right)} - \pi$$
$$x_{4} = \pi n + \operatorname{acos}{\left(w_{2} \right)} - \pi$$
$$x_{4} = \pi n + \operatorname{acos}{\left(\frac{a}{2} - \frac{\sqrt{- 72 a + \left(- 2 a - 9\right)^{2}}}{4} + \frac{9}{4} \right)} - \pi$$
$$x_{4} = \pi n + \operatorname{acos}{\left(\frac{a}{2} - \frac{\sqrt{- 72 a + \left(- 2 a - 9\right)^{2}}}{4} + \frac{9}{4} \right)} - \pi$$