Tenemos la indeterminación de tipo
oo/oo,
tal que el límite para el numerador es
$$\lim_{n \to \infty}\left(5 \cdot 5^{n}\right) = \infty$$
y el límite para el denominador es
$$\lim_{n \to \infty}\left(\frac{5^{n} n}{n + 1}\right) = \infty$$
Vamos a probar las derivadas del numerador y denominador hasta eliminar la indeterminación.
$$\lim_{n \to \infty}\left(\frac{5^{- n} 5^{n + 1} \left(n + 1\right)}{n}\right)$$
=
Introducimos una pequeña modificación de la función bajo el signo del límite
$$\lim_{n \to \infty}\left(\frac{5^{- n} 5^{n + 1} \left(n + 1\right)}{n}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} 5 \cdot 5^{n}}{\frac{d}{d n} \frac{5^{n} n}{n + 1}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{5^{n + 1} \log{\left(5 \right)}}{\frac{5^{n} n \log{\left(5 \right)}}{n + 1} - \frac{5^{n} n}{\left(n + 1\right)^{2}} + \frac{5^{n}}{n + 1}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{5^{n + 1} \log{\left(5 \right)}}{\frac{5^{n} n \log{\left(5 \right)}}{n + 1} - \frac{5^{n} n}{\left(n + 1\right)^{2}} + \frac{5^{n}}{n + 1}}\right)$$
=
$$5$$
Como puedes ver, hemos aplicado el método de l'Hopital (utilizando la derivada del numerador y denominador) 1 vez (veces)