Sr Examen

Otras calculadoras

pi*x/2+y*pi^2/8+z*pi^3/24=1; x*pi^2/8+y*pi^3/24+z*pi^4/64=pi/2-1; x*pi^3/24+y*pi^4/64+z*pi^5/160=pi^2/4-1

v

Gráfico:

interior superior

interior superior

Solución

Ha introducido [src]
           2       3    
pi*x   y*pi    z*pi     
---- + ----- + ----- = 1
 2       8       24     
π3z24+(πx2+π2y8)=1\frac{\pi^{3} z}{24} + \left(\frac{\pi x}{2} + \frac{\pi^{2} y}{8}\right) = 1
    2       3       4         
x*pi    y*pi    z*pi    pi    
----- + ----- + ----- = -- - 1
  8       24      64    2     
π4z64+(π2x8+π3y24)=1+π2\frac{\pi^{4} z}{64} + \left(\frac{\pi^{2} x}{8} + \frac{\pi^{3} y}{24}\right) = -1 + \frac{\pi}{2}
    3       4       5     2    
x*pi    y*pi    z*pi    pi     
----- + ----- + ----- = --- - 1
  24      64     160     4     
π5z160+(π3x24+π4y64)=1+π24\frac{\pi^{5} z}{160} + \left(\frac{\pi^{3} x}{24} + \frac{\pi^{4} y}{64}\right) = -1 + \frac{\pi^{2}}{4}
(pi^5*z)/160 + (pi^3*x)/24 + (pi^4*y)/64 = -1 + pi^2/4
Respuesta rápida
x1=6(40+π2+24π)π3x_{1} = \frac{6 \left(-40 + \pi^{2} + 24 \pi\right)}{\pi^{3}}
=
6(40+π2+24π)π3\frac{6 \left(-40 + \pi^{2} + 24 \pi\right)}{\pi^{3}}
=
8.75974149763151

y1=1536π96π2+2880π4y_{1} = \frac{- 1536 \pi - 96 \pi^{2} + 2880}{\pi^{4}}
=
96(16ππ2+30)π4\frac{96 \left(- 16 \pi - \pi^{2} + 30\right)}{\pi^{4}}
=
-29.699161625568

z1=240(24+π2+12π)π5z_{1} = \frac{240 \left(-24 + \pi^{2} + 12 \pi\right)}{\pi^{5}}
=
240(24+π2+12π)π5\frac{240 \left(-24 + \pi^{2} + 12 \pi\right)}{\pi^{5}}
=
18.4840785734713
Regla de Cramer
π3z24+(πx2+π2y8)=1\frac{\pi^{3} z}{24} + \left(\frac{\pi x}{2} + \frac{\pi^{2} y}{8}\right) = 1
π4z64+(π2x8+π3y24)=1+π2\frac{\pi^{4} z}{64} + \left(\frac{\pi^{2} x}{8} + \frac{\pi^{3} y}{24}\right) = -1 + \frac{\pi}{2}
π5z160+(π3x24+π4y64)=1+π24\frac{\pi^{5} z}{160} + \left(\frac{\pi^{3} x}{24} + \frac{\pi^{4} y}{64}\right) = -1 + \frac{\pi^{2}}{4}

Expresamos el sistema de ecuaciones en su forma canónica
πx2+π2y8+π3z241=0\frac{\pi x}{2} + \frac{\pi^{2} y}{8} + \frac{\pi^{3} z}{24} - 1 = 0
π2x8+π3y24+π4z64π2+1=0\frac{\pi^{2} x}{8} + \frac{\pi^{3} y}{24} + \frac{\pi^{4} z}{64} - \frac{\pi}{2} + 1 = 0
π3x24+π4y64+π5z160π24+1=0\frac{\pi^{3} x}{24} + \frac{\pi^{4} y}{64} + \frac{\pi^{5} z}{160} - \frac{\pi^{2}}{4} + 1 = 0
Presentamos el sistema de ecuaciones lineales como matriz
[π2x1+π28x2+π324x3π28x1+π324x2+π464x3π324x1+π464x2+π5160x3]=[11+π21+π24]\left[\begin{matrix}\frac{\pi}{2} x_{1} + \frac{\pi^{2}}{8} x_{2} + \frac{\pi^{3}}{24} x_{3}\\\frac{\pi^{2}}{8} x_{1} + \frac{\pi^{3}}{24} x_{2} + \frac{\pi^{4}}{64} x_{3}\\\frac{\pi^{3}}{24} x_{1} + \frac{\pi^{4}}{64} x_{2} + \frac{\pi^{5}}{160} x_{3}\end{matrix}\right] = \left[\begin{matrix}1\\-1 + \frac{\pi}{2}\\-1 + \frac{\pi^{2}}{4}\end{matrix}\right]
- es el sistema de ecuaciones en forma de
A*x = B

De la siguiente forma resolvemos una ecuación matriz de este tipo aplicando la regla de Cramer:

Como el determinante de la matriz:
A=det([π2π28π324π28π324π464π324π464π5160])=π91105920A = \operatorname{det}{\left(\left[\begin{matrix}\frac{\pi}{2} & \frac{\pi^{2}}{8} & \frac{\pi^{3}}{24}\\\frac{\pi^{2}}{8} & \frac{\pi^{3}}{24} & \frac{\pi^{4}}{64}\\\frac{\pi^{3}}{24} & \frac{\pi^{4}}{64} & \frac{\pi^{5}}{160}\end{matrix}\right] \right)} = \frac{\pi^{9}}{1105920}
, entonces
Raíz xi obtenemos dividiendo el determinador de la matriz Ai. por el determinador de la matriz A.
( Ai obtenemos sustituyendo en la matriz A de columna i por columna B )
x1=1105920det([1π28π3241+π2π324π4641+π24π464π5160])π9=2(240(1π(1+π4)2+π26)π2+112(30(1π(1+π4)2+π26)π1+π4)π)πx_{1} = \frac{1105920 \operatorname{det}{\left(\left[\begin{matrix}1 & \frac{\pi^{2}}{8} & \frac{\pi^{3}}{24}\\-1 + \frac{\pi}{2} & \frac{\pi^{3}}{24} & \frac{\pi^{4}}{64}\\-1 + \frac{\pi^{2}}{4} & \frac{\pi^{4}}{64} & \frac{\pi^{5}}{160}\end{matrix}\right] \right)}}{\pi^{9}} = \frac{2 \left(- \frac{240 \left(-1 - \frac{\pi \left(-1 + \frac{\pi}{4}\right)}{2} + \frac{\pi^{2}}{6}\right)}{\pi^{2}} + 1 - \frac{12 \left(- \frac{30 \left(-1 - \frac{\pi \left(-1 + \frac{\pi}{4}\right)}{2} + \frac{\pi^{2}}{6}\right)}{\pi} - 1 + \frac{\pi}{4}\right)}{\pi}\right)}{\pi}
=
6(40+π2+24π)π3\frac{6 \left(-40 + \pi^{2} + 24 \pi\right)}{\pi^{3}}
x2=1105920det([π21π324π281+π2π464π3241+π24π5160])π9=96(30(1π(1+π4)2+π26)π1+π4)π3x_{2} = \frac{1105920 \operatorname{det}{\left(\left[\begin{matrix}\frac{\pi}{2} & 1 & \frac{\pi^{3}}{24}\\\frac{\pi^{2}}{8} & -1 + \frac{\pi}{2} & \frac{\pi^{4}}{64}\\\frac{\pi^{3}}{24} & -1 + \frac{\pi^{2}}{4} & \frac{\pi^{5}}{160}\end{matrix}\right] \right)}}{\pi^{9}} = \frac{96 \left(- \frac{30 \left(-1 - \frac{\pi \left(-1 + \frac{\pi}{4}\right)}{2} + \frac{\pi^{2}}{6}\right)}{\pi} - 1 + \frac{\pi}{4}\right)}{\pi^{3}}
=
1536π96π2+2880π4\frac{- 1536 \pi - 96 \pi^{2} + 2880}{\pi^{4}}
x3=1105920det([π2π281π28π3241+π2π324π4641+π24])π9=5760(1π(1+π4)2+π26)π5x_{3} = \frac{1105920 \operatorname{det}{\left(\left[\begin{matrix}\frac{\pi}{2} & \frac{\pi^{2}}{8} & 1\\\frac{\pi^{2}}{8} & \frac{\pi^{3}}{24} & -1 + \frac{\pi}{2}\\\frac{\pi^{3}}{24} & \frac{\pi^{4}}{64} & -1 + \frac{\pi^{2}}{4}\end{matrix}\right] \right)}}{\pi^{9}} = \frac{5760 \left(-1 - \frac{\pi \left(-1 + \frac{\pi}{4}\right)}{2} + \frac{\pi^{2}}{6}\right)}{\pi^{5}}
=
240(24+π2+12π)π5\frac{240 \left(-24 + \pi^{2} + 12 \pi\right)}{\pi^{5}}
Método de Gauss
Tenemos el sistema de ecuaciones
π3z24+(πx2+π2y8)=1\frac{\pi^{3} z}{24} + \left(\frac{\pi x}{2} + \frac{\pi^{2} y}{8}\right) = 1
π4z64+(π2x8+π3y24)=1+π2\frac{\pi^{4} z}{64} + \left(\frac{\pi^{2} x}{8} + \frac{\pi^{3} y}{24}\right) = -1 + \frac{\pi}{2}
π5z160+(π3x24+π4y64)=1+π24\frac{\pi^{5} z}{160} + \left(\frac{\pi^{3} x}{24} + \frac{\pi^{4} y}{64}\right) = -1 + \frac{\pi^{2}}{4}

Expresamos el sistema de ecuaciones en su forma canónica
πx2+π2y8+π3z241=0\frac{\pi x}{2} + \frac{\pi^{2} y}{8} + \frac{\pi^{3} z}{24} - 1 = 0
π2x8+π3y24+π4z64π2+1=0\frac{\pi^{2} x}{8} + \frac{\pi^{3} y}{24} + \frac{\pi^{4} z}{64} - \frac{\pi}{2} + 1 = 0
π3x24+π4y64+π5z160π24+1=0\frac{\pi^{3} x}{24} + \frac{\pi^{4} y}{64} + \frac{\pi^{5} z}{160} - \frac{\pi^{2}}{4} + 1 = 0
Presentamos el sistema de ecuaciones lineales como matriz
[π2π28π3241π28π324π4641+π2π324π464π51601+π24]\left[\begin{matrix}\frac{\pi}{2} & \frac{\pi^{2}}{8} & \frac{\pi^{3}}{24} & 1\\\frac{\pi^{2}}{8} & \frac{\pi^{3}}{24} & \frac{\pi^{4}}{64} & -1 + \frac{\pi}{2}\\\frac{\pi^{3}}{24} & \frac{\pi^{4}}{64} & \frac{\pi^{5}}{160} & -1 + \frac{\pi^{2}}{4}\end{matrix}\right]
En 1 de columna
[π2π28π324]\left[\begin{matrix}\frac{\pi}{2}\\\frac{\pi^{2}}{8}\\\frac{\pi^{3}}{24}\end{matrix}\right]
hacemos que todos los elementos excepto
1 -del elemento son iguales a cero.
- Para ello, cogemos 1 fila
[π2π28π3241]\left[\begin{matrix}\frac{\pi}{2} & \frac{\pi^{2}}{8} & \frac{\pi^{3}}{24} & 1\end{matrix}\right]
,
y lo restaremos de otras filas:
De 2 de fila restamos:
[π4π2+π28π4π28+π324π4π324+π464π4+(1+π2)]=[0π396π41921+π4]\left[\begin{matrix}- \frac{\pi}{4} \frac{\pi}{2} + \frac{\pi^{2}}{8} & - \frac{\pi}{4} \frac{\pi^{2}}{8} + \frac{\pi^{3}}{24} & - \frac{\pi}{4} \frac{\pi^{3}}{24} + \frac{\pi^{4}}{64} & - \frac{\pi}{4} + \left(-1 + \frac{\pi}{2}\right)\end{matrix}\right] = \left[\begin{matrix}0 & \frac{\pi^{3}}{96} & \frac{\pi^{4}}{192} & -1 + \frac{\pi}{4}\end{matrix}\right]
obtenemos
[π2π28π32410π396π41921+π4π324π464π51601+π24]\left[\begin{matrix}\frac{\pi}{2} & \frac{\pi^{2}}{8} & \frac{\pi^{3}}{24} & 1\\0 & \frac{\pi^{3}}{96} & \frac{\pi^{4}}{192} & -1 + \frac{\pi}{4}\\\frac{\pi^{3}}{24} & \frac{\pi^{4}}{64} & \frac{\pi^{5}}{160} & -1 + \frac{\pi^{2}}{4}\end{matrix}\right]
De 3 de fila restamos:
[π2π212+π324π212π28+π464π212π324+π5160π212+(1+π24)]=[0π4192π53601+π26]\left[\begin{matrix}- \frac{\pi}{2} \frac{\pi^{2}}{12} + \frac{\pi^{3}}{24} & - \frac{\pi^{2}}{12} \frac{\pi^{2}}{8} + \frac{\pi^{4}}{64} & - \frac{\pi^{2}}{12} \frac{\pi^{3}}{24} + \frac{\pi^{5}}{160} & - \frac{\pi^{2}}{12} + \left(-1 + \frac{\pi^{2}}{4}\right)\end{matrix}\right] = \left[\begin{matrix}0 & \frac{\pi^{4}}{192} & \frac{\pi^{5}}{360} & -1 + \frac{\pi^{2}}{6}\end{matrix}\right]
obtenemos
[π2π28π32410π396π41921+π40π4192π53601+π26]\left[\begin{matrix}\frac{\pi}{2} & \frac{\pi^{2}}{8} & \frac{\pi^{3}}{24} & 1\\0 & \frac{\pi^{3}}{96} & \frac{\pi^{4}}{192} & -1 + \frac{\pi}{4}\\0 & \frac{\pi^{4}}{192} & \frac{\pi^{5}}{360} & -1 + \frac{\pi^{2}}{6}\end{matrix}\right]
En 2 de columna
[π28π396π4192]\left[\begin{matrix}\frac{\pi^{2}}{8}\\\frac{\pi^{3}}{96}\\\frac{\pi^{4}}{192}\end{matrix}\right]
hacemos que todos los elementos excepto
2 -del elemento son iguales a cero.
- Para ello, cogemos 2 fila
[0π396π41921+π4]\left[\begin{matrix}0 & \frac{\pi^{3}}{96} & \frac{\pi^{4}}{192} & -1 + \frac{\pi}{4}\end{matrix}\right]
,
y lo restaremos de otras filas:
De 1 de fila restamos:
[012π+π212ππ396+π2812ππ4192+π324112π(1+π4)]=[π20π34812(1+π4)π+1]\left[\begin{matrix}- 0 \frac{12}{\pi} + \frac{\pi}{2} & - \frac{12}{\pi} \frac{\pi^{3}}{96} + \frac{\pi^{2}}{8} & - \frac{12}{\pi} \frac{\pi^{4}}{192} + \frac{\pi^{3}}{24} & 1 - \frac{12}{\pi} \left(-1 + \frac{\pi}{4}\right)\end{matrix}\right] = \left[\begin{matrix}\frac{\pi}{2} & 0 & - \frac{\pi^{3}}{48} & - \frac{12 \left(-1 + \frac{\pi}{4}\right)}{\pi} + 1\end{matrix}\right]
obtenemos
[π20π34812(1+π4)π+10π396π41921+π40π4192π53601+π26]\left[\begin{matrix}\frac{\pi}{2} & 0 & - \frac{\pi^{3}}{48} & - \frac{12 \left(-1 + \frac{\pi}{4}\right)}{\pi} + 1\\0 & \frac{\pi^{3}}{96} & \frac{\pi^{4}}{192} & -1 + \frac{\pi}{4}\\0 & \frac{\pi^{4}}{192} & \frac{\pi^{5}}{360} & -1 + \frac{\pi^{2}}{6}\end{matrix}\right]
De 3 de fila restamos:
[0π2π2π396+π4192π2π4192+π5360π2(1+π4)+(1+π26)]=[00π557601π(1+π4)2+π26]\left[\begin{matrix}- 0 \frac{\pi}{2} & - \frac{\pi}{2} \frac{\pi^{3}}{96} + \frac{\pi^{4}}{192} & - \frac{\pi}{2} \frac{\pi^{4}}{192} + \frac{\pi^{5}}{360} & - \frac{\pi}{2} \left(-1 + \frac{\pi}{4}\right) + \left(-1 + \frac{\pi^{2}}{6}\right)\end{matrix}\right] = \left[\begin{matrix}0 & 0 & \frac{\pi^{5}}{5760} & -1 - \frac{\pi \left(-1 + \frac{\pi}{4}\right)}{2} + \frac{\pi^{2}}{6}\end{matrix}\right]
obtenemos
[π20π34812(1+π4)π+10π396π41921+π400π557601π(1+π4)2+π26]\left[\begin{matrix}\frac{\pi}{2} & 0 & - \frac{\pi^{3}}{48} & - \frac{12 \left(-1 + \frac{\pi}{4}\right)}{\pi} + 1\\0 & \frac{\pi^{3}}{96} & \frac{\pi^{4}}{192} & -1 + \frac{\pi}{4}\\0 & 0 & \frac{\pi^{5}}{5760} & -1 - \frac{\pi \left(-1 + \frac{\pi}{4}\right)}{2} + \frac{\pi^{2}}{6}\end{matrix}\right]
En 3 de columna
[π348π4192π55760]\left[\begin{matrix}- \frac{\pi^{3}}{48}\\\frac{\pi^{4}}{192}\\\frac{\pi^{5}}{5760}\end{matrix}\right]
hacemos que todos los elementos excepto
3 -del elemento son iguales a cero.
- Para ello, cogemos 3 fila
[00π557601π(1+π4)2+π26]\left[\begin{matrix}0 & 0 & \frac{\pi^{5}}{5760} & -1 - \frac{\pi \left(-1 + \frac{\pi}{4}\right)}{2} + \frac{\pi^{2}}{6}\end{matrix}\right]
,
y lo restaremos de otras filas:
De 1 de fila restamos:
[0(120π2)+π20(120π2)π348120π2π55760(12(1+π4)π+1)120π2(1π(1+π4)2+π26)]=[π20012(1+π4)π+1+120(1π(1+π4)2+π26)π2]\left[\begin{matrix}- 0 \left(- \frac{120}{\pi^{2}}\right) + \frac{\pi}{2} & - 0 \left(- \frac{120}{\pi^{2}}\right) & - \frac{\pi^{3}}{48} - - \frac{120}{\pi^{2}} \frac{\pi^{5}}{5760} & \left(- \frac{12 \left(-1 + \frac{\pi}{4}\right)}{\pi} + 1\right) - - \frac{120}{\pi^{2}} \left(-1 - \frac{\pi \left(-1 + \frac{\pi}{4}\right)}{2} + \frac{\pi^{2}}{6}\right)\end{matrix}\right] = \left[\begin{matrix}\frac{\pi}{2} & 0 & 0 & - \frac{12 \left(-1 + \frac{\pi}{4}\right)}{\pi} + 1 + \frac{120 \left(-1 - \frac{\pi \left(-1 + \frac{\pi}{4}\right)}{2} + \frac{\pi^{2}}{6}\right)}{\pi^{2}}\end{matrix}\right]
obtenemos
[π20012(1+π4)π+1+120(1π(1+π4)2+π26)π20π396π41921+π400π557601π(1+π4)2+π26]\left[\begin{matrix}\frac{\pi}{2} & 0 & 0 & - \frac{12 \left(-1 + \frac{\pi}{4}\right)}{\pi} + 1 + \frac{120 \left(-1 - \frac{\pi \left(-1 + \frac{\pi}{4}\right)}{2} + \frac{\pi^{2}}{6}\right)}{\pi^{2}}\\0 & \frac{\pi^{3}}{96} & \frac{\pi^{4}}{192} & -1 + \frac{\pi}{4}\\0 & 0 & \frac{\pi^{5}}{5760} & -1 - \frac{\pi \left(-1 + \frac{\pi}{4}\right)}{2} + \frac{\pi^{2}}{6}\end{matrix}\right]
De 2 de fila restamos:
[030π030π+π39630ππ55760+π419230π(1π(1+π4)2+π26)+(1+π4)]=[0π396030(1π(1+π4)2+π26)π1+π4]\left[\begin{matrix}- 0 \frac{30}{\pi} & - 0 \frac{30}{\pi} + \frac{\pi^{3}}{96} & - \frac{30}{\pi} \frac{\pi^{5}}{5760} + \frac{\pi^{4}}{192} & - \frac{30}{\pi} \left(-1 - \frac{\pi \left(-1 + \frac{\pi}{4}\right)}{2} + \frac{\pi^{2}}{6}\right) + \left(-1 + \frac{\pi}{4}\right)\end{matrix}\right] = \left[\begin{matrix}0 & \frac{\pi^{3}}{96} & 0 & - \frac{30 \left(-1 - \frac{\pi \left(-1 + \frac{\pi}{4}\right)}{2} + \frac{\pi^{2}}{6}\right)}{\pi} - 1 + \frac{\pi}{4}\end{matrix}\right]
obtenemos
[π20012(1+π4)π+1+120(1π(1+π4)2+π26)π20π396030(1π(1+π4)2+π26)π1+π400π557601π(1+π4)2+π26]\left[\begin{matrix}\frac{\pi}{2} & 0 & 0 & - \frac{12 \left(-1 + \frac{\pi}{4}\right)}{\pi} + 1 + \frac{120 \left(-1 - \frac{\pi \left(-1 + \frac{\pi}{4}\right)}{2} + \frac{\pi^{2}}{6}\right)}{\pi^{2}}\\0 & \frac{\pi^{3}}{96} & 0 & - \frac{30 \left(-1 - \frac{\pi \left(-1 + \frac{\pi}{4}\right)}{2} + \frac{\pi^{2}}{6}\right)}{\pi} - 1 + \frac{\pi}{4}\\0 & 0 & \frac{\pi^{5}}{5760} & -1 - \frac{\pi \left(-1 + \frac{\pi}{4}\right)}{2} + \frac{\pi^{2}}{6}\end{matrix}\right]

Todo está casi listo, sólo hace falta encontrar la incógnita, resolviendo las ecuaciones ordinarias:
πx12120(1π(1+π4)2+π26)π21+12(1+π4)π=0\frac{\pi x_{1}}{2} - \frac{120 \left(-1 - \frac{\pi \left(-1 + \frac{\pi}{4}\right)}{2} + \frac{\pi^{2}}{6}\right)}{\pi^{2}} - 1 + \frac{12 \left(-1 + \frac{\pi}{4}\right)}{\pi} = 0
π3x296π4+1+30(1π(1+π4)2+π26)π=0\frac{\pi^{3} x_{2}}{96} - \frac{\pi}{4} + 1 + \frac{30 \left(-1 - \frac{\pi \left(-1 + \frac{\pi}{4}\right)}{2} + \frac{\pi^{2}}{6}\right)}{\pi} = 0
π5x35760π26+π(1+π4)2+1=0\frac{\pi^{5} x_{3}}{5760} - \frac{\pi^{2}}{6} + \frac{\pi \left(-1 + \frac{\pi}{4}\right)}{2} + 1 = 0
Obtenemos como resultado:
x1=6(40+π2+24π)π3x_{1} = \frac{6 \left(-40 + \pi^{2} + 24 \pi\right)}{\pi^{3}}
x2=96(16ππ2+30)π4x_{2} = \frac{96 \left(- 16 \pi - \pi^{2} + 30\right)}{\pi^{4}}
x3=240(24+π2+12π)π5x_{3} = \frac{240 \left(-24 + \pi^{2} + 12 \pi\right)}{\pi^{5}}
Respuesta numérica [src]
x1 = 8.759741497631506
y1 = -29.69916162556796
z1 = 18.48407857347126
x1 = 8.759741497631506
y1 = -29.69916162556796
z1 = 18.48407857347126