Se da la ecuación de la línea de 2-o orden:
$$- \frac{x^{2}}{6} - \frac{x}{3} + \frac{5}{2} = 0$$
Esta ecuación tiene la forma:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
donde
$$a_{11} = - \frac{1}{6}$$
$$a_{12} = 0$$
$$a_{13} = - \frac{1}{6}$$
$$a_{22} = 0$$
$$a_{23} = 0$$
$$a_{33} = \frac{5}{2}$$
Las invariantes de esta ecuación al transformar las coordenadas son los determinantes:
$$I_{1} = a_{11} + a_{22}$$
|a11 a12|
I2 = | |
|a12 a22|
$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|$$
|a11 a13| |a22 a23|
K2 = | | + | |
|a13 a33| |a23 a33|
sustituimos coeficientes
$$I_{1} = - \frac{1}{6}$$
|-1/6 0|
I2 = | |
| 0 0|
$$I_{3} = \left|\begin{matrix}- \frac{1}{6} & 0 & - \frac{1}{6}\\0 & 0 & 0\\- \frac{1}{6} & 0 & \frac{5}{2}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda - \frac{1}{6} & 0\\0 & - \lambda\end{matrix}\right|$$
|-1/6 -1/6| |0 0 |
K2 = | | + | |
|-1/6 5/2 | |0 5/2|
$$I_{1} = - \frac{1}{6}$$
$$I_{2} = 0$$
$$I_{3} = 0$$
$$I{\left(\lambda \right)} = \lambda^{2} + \frac{\lambda}{6}$$
$$K_{2} = - \frac{4}{9}$$
Como
$$I_{2} = 0 \wedge I_{3} = 0 \wedge K_{2} < 0 \wedge I_{1} \neq 0$$
entonces por razón de tipos de rectas:
esta ecuación tiene el tipo : dos rectos paralelos
$$I_{1} \tilde y^{2} + \frac{K_{2}}{I_{1}} = 0$$
o
$$\frac{8}{3} - \frac{\tilde y^{2}}{6} = 0$$
None
- está reducida a la forma canónica