Se da la ecuación de superficie de 2 grado:
6 x 1 2 + 2 6 x 1 x 2 − 3 x 2 2 − 3 x 3 2 = 0 6 x_{1}^{2} + 2 \sqrt{6} x_{1} x_{2} - 3 x_{2}^{2} - 3 x_{3}^{2} = 0 6 x 1 2 + 2 6 x 1 x 2 − 3 x 2 2 − 3 x 3 2 = 0 Esta ecuación tiene la forma:
a 11 x 3 2 + 2 a 12 x 2 x 3 + 2 a 13 x 1 x 3 + 2 a 14 x 3 + a 22 x 2 2 + 2 a 23 x 1 x 2 + 2 a 24 x 2 + a 33 x 1 2 + 2 a 34 x 1 + a 44 = 0 a_{11} x_{3}^{2} + 2 a_{12} x_{2} x_{3} + 2 a_{13} x_{1} x_{3} + 2 a_{14} x_{3} + a_{22} x_{2}^{2} + 2 a_{23} x_{1} x_{2} + 2 a_{24} x_{2} + a_{33} x_{1}^{2} + 2 a_{34} x_{1} + a_{44} = 0 a 11 x 3 2 + 2 a 12 x 2 x 3 + 2 a 13 x 1 x 3 + 2 a 14 x 3 + a 22 x 2 2 + 2 a 23 x 1 x 2 + 2 a 24 x 2 + a 33 x 1 2 + 2 a 34 x 1 + a 44 = 0 donde
a 11 = − 3 a_{11} = -3 a 11 = − 3 a 12 = 0 a_{12} = 0 a 12 = 0 a 13 = 0 a_{13} = 0 a 13 = 0 a 14 = 0 a_{14} = 0 a 14 = 0 a 22 = − 3 a_{22} = -3 a 22 = − 3 a 23 = 6 a_{23} = \sqrt{6} a 23 = 6 a 24 = 0 a_{24} = 0 a 24 = 0 a 33 = 6 a_{33} = 6 a 33 = 6 a 34 = 0 a_{34} = 0 a 34 = 0 a 44 = 0 a_{44} = 0 a 44 = 0 Las invariantes de esta ecuación al transformar las coordenadas son los determinantes:
I 1 = a 11 + a 22 + a 33 I_{1} = a_{11} + a_{22} + a_{33} I 1 = a 11 + a 22 + a 33 |a11 a12| |a22 a23| |a11 a13|
I2 = | | + | | + | |
|a12 a22| |a23 a33| |a13 a33| I 3 = ∣ a 11 a 12 a 13 a 12 a 22 a 23 a 13 a 23 a 33 ∣ I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right| I 3 = a 11 a 12 a 13 a 12 a 22 a 23 a 13 a 23 a 33 I 4 = ∣ a 11 a 12 a 13 a 14 a 12 a 22 a 23 a 24 a 13 a 23 a 33 a 34 a 14 a 24 a 34 a 44 ∣ I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right| I 4 = a 11 a 12 a 13 a 14 a 12 a 22 a 23 a 24 a 13 a 23 a 33 a 34 a 14 a 24 a 34 a 44 I ( λ ) = ∣ a 11 − λ a 12 a 13 a 12 a 22 − λ a 23 a 13 a 23 a 33 − λ ∣ I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right| I ( λ ) = a 11 − λ a 12 a 13 a 12 a 22 − λ a 23 a 13 a 23 a 33 − λ |a11 a14| |a22 a24| |a33 a34|
K2 = | | + | | + | |
|a14 a44| |a24 a44| |a34 a44| |a11 a12 a14| |a22 a23 a24| |a11 a13 a14|
| | | | | |
K3 = |a12 a22 a24| + |a23 a33 a34| + |a13 a33 a34|
| | | | | |
|a14 a24 a44| |a24 a34 a44| |a14 a34 a44| sustituimos coeficientes
I 1 = 0 I_{1} = 0 I 1 = 0 | ___|
|-3 0 | | -3 \/ 6 | |-3 0|
I2 = | | + | | + | |
|0 -3| | ___ | |0 6|
|\/ 6 6 | I 3 = ∣ − 3 0 0 0 − 3 6 0 6 6 ∣ I_{3} = \left|\begin{matrix}-3 & 0 & 0\\0 & -3 & \sqrt{6}\\0 & \sqrt{6} & 6\end{matrix}\right| I 3 = − 3 0 0 0 − 3 6 0 6 6 I 4 = ∣ − 3 0 0 0 0 − 3 6 0 0 6 6 0 0 0 0 0 ∣ I_{4} = \left|\begin{matrix}-3 & 0 & 0 & 0\\0 & -3 & \sqrt{6} & 0\\0 & \sqrt{6} & 6 & 0\\0 & 0 & 0 & 0\end{matrix}\right| I 4 = − 3 0 0 0 0 − 3 6 0 0 6 6 0 0 0 0 0 I ( λ ) = ∣ − λ − 3 0 0 0 − λ − 3 6 0 6 6 − λ ∣ I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda - 3 & 0 & 0\\0 & - \lambda - 3 & \sqrt{6}\\0 & \sqrt{6} & 6 - \lambda\end{matrix}\right| I ( λ ) = − λ − 3 0 0 0 − λ − 3 6 0 6 6 − λ |-3 0| |-3 0| |6 0|
K2 = | | + | | + | |
|0 0| |0 0| |0 0| | ___ |
|-3 0 0| | -3 \/ 6 0| |-3 0 0|
| | | | | |
K3 = |0 -3 0| + | ___ | + |0 6 0|
| | |\/ 6 6 0| | |
|0 0 0| | | |0 0 0|
| 0 0 0| I 1 = 0 I_{1} = 0 I 1 = 0 I 2 = − 33 I_{2} = -33 I 2 = − 33 I 3 = 72 I_{3} = 72 I 3 = 72 I 4 = 0 I_{4} = 0 I 4 = 0 I ( λ ) = − λ 3 + 33 λ + 72 I{\left(\lambda \right)} = - \lambda^{3} + 33 \lambda + 72 I ( λ ) = − λ 3 + 33 λ + 72 K 2 = 0 K_{2} = 0 K 2 = 0 K 3 = 0 K_{3} = 0 K 3 = 0 Como
I3 != 0 entonces por razón de tipos de rectas:
hay que
Formulamos la ecuación característica para nuestra superficie:
− I 1 λ 2 + I 2 λ − I 3 + λ 3 = 0 - I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0 − I 1 λ 2 + I 2 λ − I 3 + λ 3 = 0 o
λ 3 − 33 λ − 72 = 0 \lambda^{3} - 33 \lambda - 72 = 0 λ 3 − 33 λ − 72 = 0 λ 1 = − 3 \lambda_{1} = -3 λ 1 = − 3 λ 2 = 3 2 − 105 2 \lambda_{2} = \frac{3}{2} - \frac{\sqrt{105}}{2} λ 2 = 2 3 − 2 105 λ 3 = 3 2 + 105 2 \lambda_{3} = \frac{3}{2} + \frac{\sqrt{105}}{2} λ 3 = 2 3 + 2 105 entonces la forma canónica de la ecuación será
( x ~ 1 2 λ 3 + ( x ~ 2 2 λ 2 + x ~ 3 2 λ 1 ) ) + I 4 I 3 = 0 \left(\tilde x1^{2} \lambda_{3} + \left(\tilde x2^{2} \lambda_{2} + \tilde x3^{2} \lambda_{1}\right)\right) + \frac{I_{4}}{I_{3}} = 0 ( x ~ 1 2 λ 3 + ( x ~ 2 2 λ 2 + x ~ 3 2 λ 1 ) ) + I 3 I 4 = 0 x ~ 1 2 ( 3 2 + 105 2 ) + x ~ 2 2 ( 3 2 − 105 2 ) − 3 x ~ 3 2 = 0 \tilde x1^{2} \left(\frac{3}{2} + \frac{\sqrt{105}}{2}\right) + \tilde x2^{2} \left(\frac{3}{2} - \frac{\sqrt{105}}{2}\right) - 3 \tilde x3^{2} = 0 x ~ 1 2 ( 2 3 + 2 105 ) + x ~ 2 2 ( 2 3 − 2 105 ) − 3 x ~ 3 2 = 0 − x ~ 1 2 ( 1 3 2 + 105 2 ) 2 + ( x ~ 2 2 ( 1 − 3 2 + 105 2 ) 2 + x ~ 3 2 ( 3 3 ) 2 ) = 0 - \frac{\tilde x1^{2}}{\left(\frac{1}{\sqrt{\frac{3}{2} + \frac{\sqrt{105}}{2}}}\right)^{2}} + \left(\frac{\tilde x2^{2}}{\left(\frac{1}{\sqrt{- \frac{3}{2} + \frac{\sqrt{105}}{2}}}\right)^{2}} + \frac{\tilde x3^{2}}{\left(\frac{\sqrt{3}}{3}\right)^{2}}\right) = 0 − ( 2 3 + 2 105 1 ) 2 x ~ 1 2 + ( − 2 3 + 2 105 1 ) 2 x ~ 2 2 + ( 3 3 ) 2 x ~ 3 2 = 0 es la ecuación para el tipo cono
- está reducida a la forma canónica