Sr Examen

Otras calculadoras

6x1^2-3x2^2-3x3^2+2sqrt(6)*x1*x2 forma canónica

El profesor se sorprenderá mucho al ver tu solución correcta😉

v

Gráfico:

x: [, ]
y: [, ]
z: [, ]

Calidad:

 (Cantidad de puntos en el eje)

Tipo de trazado:

Solución

Ha introducido [src]
      2       2       2             ___    
- 3*x2  - 3*x3  + 6*x1  + 2*x1*x2*\/ 6  = 0
6x12+26x1x23x223x32=06 x_{1}^{2} + 2 \sqrt{6} x_{1} x_{2} - 3 x_{2}^{2} - 3 x_{3}^{2} = 0
6*x1^2 + 2*sqrt(6)*x1*x2 - 3*x2^2 - 3*x3^2 = 0
Método de invariantes
Se da la ecuación de superficie de 2 grado:
6x12+26x1x23x223x32=06 x_{1}^{2} + 2 \sqrt{6} x_{1} x_{2} - 3 x_{2}^{2} - 3 x_{3}^{2} = 0
Esta ecuación tiene la forma:
a11x32+2a12x2x3+2a13x1x3+2a14x3+a22x22+2a23x1x2+2a24x2+a33x12+2a34x1+a44=0a_{11} x_{3}^{2} + 2 a_{12} x_{2} x_{3} + 2 a_{13} x_{1} x_{3} + 2 a_{14} x_{3} + a_{22} x_{2}^{2} + 2 a_{23} x_{1} x_{2} + 2 a_{24} x_{2} + a_{33} x_{1}^{2} + 2 a_{34} x_{1} + a_{44} = 0
donde
a11=3a_{11} = -3
a12=0a_{12} = 0
a13=0a_{13} = 0
a14=0a_{14} = 0
a22=3a_{22} = -3
a23=6a_{23} = \sqrt{6}
a24=0a_{24} = 0
a33=6a_{33} = 6
a34=0a_{34} = 0
a44=0a_{44} = 0
Las invariantes de esta ecuación al transformar las coordenadas son los determinantes:
I1=a11+a22+a33I_{1} = a_{11} + a_{22} + a_{33}
     |a11  a12|   |a22  a23|   |a11  a13|
I2 = |        | + |        | + |        |
     |a12  a22|   |a23  a33|   |a13  a33|

I3=a11a12a13a12a22a23a13a23a33I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|
I4=a11a12a13a14a12a22a23a24a13a23a33a34a14a24a34a44I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|
I(λ)=a11λa12a13a12a22λa23a13a23a33λI{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|
     |a11  a14|   |a22  a24|   |a33  a34|
K2 = |        | + |        | + |        |
     |a14  a44|   |a24  a44|   |a34  a44|

     |a11  a12  a14|   |a22  a23  a24|   |a11  a13  a14|
     |             |   |             |   |             |
K3 = |a12  a22  a24| + |a23  a33  a34| + |a13  a33  a34|
     |             |   |             |   |             |
     |a14  a24  a44|   |a24  a34  a44|   |a14  a34  a44|

sustituimos coeficientes
I1=0I_{1} = 0
                |         ___|          
     |-3  0 |   | -3    \/ 6 |   |-3  0|
I2 = |      | + |            | + |     |
     |0   -3|   |  ___       |   |0   6|
                |\/ 6     6  |          

I3=300036066I_{3} = \left|\begin{matrix}-3 & 0 & 0\\0 & -3 & \sqrt{6}\\0 & \sqrt{6} & 6\end{matrix}\right|
I4=3000036006600000I_{4} = \left|\begin{matrix}-3 & 0 & 0 & 0\\0 & -3 & \sqrt{6} & 0\\0 & \sqrt{6} & 6 & 0\\0 & 0 & 0 & 0\end{matrix}\right|
I(λ)=λ3000λ36066λI{\left(\lambda \right)} = \left|\begin{matrix}- \lambda - 3 & 0 & 0\\0 & - \lambda - 3 & \sqrt{6}\\0 & \sqrt{6} & 6 - \lambda\end{matrix}\right|
     |-3  0|   |-3  0|   |6  0|
K2 = |     | + |     | + |    |
     |0   0|   |0   0|   |0  0|

                   |         ___   |             
     |-3  0   0|   | -3    \/ 6   0|   |-3  0  0|
     |         |   |               |   |        |
K3 = |0   -3  0| + |  ___          | + |0   6  0|
     |         |   |\/ 6     6    0|   |        |
     |0   0   0|   |               |   |0   0  0|
                   |  0      0    0|             

I1=0I_{1} = 0
I2=33I_{2} = -33
I3=72I_{3} = 72
I4=0I_{4} = 0
I(λ)=λ3+33λ+72I{\left(\lambda \right)} = - \lambda^{3} + 33 \lambda + 72
K2=0K_{2} = 0
K3=0K_{3} = 0
Como
I3 != 0

entonces por razón de tipos de rectas:
hay que
Formulamos la ecuación característica para nuestra superficie:
I1λ2+I2λI3+λ3=0- I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0
o
λ333λ72=0\lambda^{3} - 33 \lambda - 72 = 0
λ1=3\lambda_{1} = -3
λ2=321052\lambda_{2} = \frac{3}{2} - \frac{\sqrt{105}}{2}
λ3=32+1052\lambda_{3} = \frac{3}{2} + \frac{\sqrt{105}}{2}
entonces la forma canónica de la ecuación será
(x~12λ3+(x~22λ2+x~32λ1))+I4I3=0\left(\tilde x1^{2} \lambda_{3} + \left(\tilde x2^{2} \lambda_{2} + \tilde x3^{2} \lambda_{1}\right)\right) + \frac{I_{4}}{I_{3}} = 0
x~12(32+1052)+x~22(321052)3x~32=0\tilde x1^{2} \left(\frac{3}{2} + \frac{\sqrt{105}}{2}\right) + \tilde x2^{2} \left(\frac{3}{2} - \frac{\sqrt{105}}{2}\right) - 3 \tilde x3^{2} = 0
x~12(132+1052)2+(x~22(132+1052)2+x~32(33)2)=0- \frac{\tilde x1^{2}}{\left(\frac{1}{\sqrt{\frac{3}{2} + \frac{\sqrt{105}}{2}}}\right)^{2}} + \left(\frac{\tilde x2^{2}}{\left(\frac{1}{\sqrt{- \frac{3}{2} + \frac{\sqrt{105}}{2}}}\right)^{2}} + \frac{\tilde x3^{2}}{\left(\frac{\sqrt{3}}{3}\right)^{2}}\right) = 0
es la ecuación para el tipo cono
- está reducida a la forma canónica