Sr Examen

Otras calculadoras

4x^2–16x–y=0 forma canónica

El profesor se sorprenderá mucho al ver tu solución correcta😉

v

Gráfico:

x: [, ]
y: [, ]
z: [, ]

Calidad:

 (Cantidad de puntos en el eje)

Tipo de trazado:

Solución

Ha introducido [src]
               2    
-y - 16*x + 4*x  = 0
$$4 x^{2} - 16 x - y = 0$$
4*x^2 - 16*x - y = 0
Solución detallada
Se da la ecuación de la línea de 2-o orden:
$$4 x^{2} - 16 x - y = 0$$
Esta ecuación tiene la forma:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
donde
$$a_{11} = 4$$
$$a_{12} = 0$$
$$a_{13} = -8$$
$$a_{22} = 0$$
$$a_{23} = - \frac{1}{2}$$
$$a_{33} = 0$$
Calculemos el determinante
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
o, sustituimos
$$\Delta = \left|\begin{matrix}4 & 0\\0 & 0\end{matrix}\right|$$
$$\Delta = 0$$
Como
$$\Delta$$
es igual a 0, entonces
$$\left(2 \tilde x - 4\right)^{2} = \tilde y + 16$$
$$\left(\tilde x - 2\right)^{2} = \frac{\tilde y}{4} + 4$$
$$\tilde x'^{2} = \frac{\tilde y}{4} + 4$$
Esta ecuación es una parábola
- está reducida a la forma canónica
Centro de las coordenadas canónicas en Oxy
$$x_{0} = \tilde x \cos{\left(\phi \right)} - \tilde y \sin{\left(\phi \right)}$$
$$y_{0} = \tilde x \sin{\left(\phi \right)} + \tilde y \cos{\left(\phi \right)}$$
$$x_{0} = 0 \cdot 0$$
$$y_{0} = 0 \cdot 0$$
$$x_{0} = 0$$
$$y_{0} = 0$$
Centro de las coordenadas canónicas en el punto O
(0, 0)

Base de las coordenadas canónicas
$$\vec e_1 = \left( 1, \ 0\right)$$
$$\vec e_2 = \left( 0, \ 1\right)$$
Método de invariantes
Se da la ecuación de la línea de 2-o orden:
$$4 x^{2} - 16 x - y = 0$$
Esta ecuación tiene la forma:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
donde
$$a_{11} = 4$$
$$a_{12} = 0$$
$$a_{13} = -8$$
$$a_{22} = 0$$
$$a_{23} = - \frac{1}{2}$$
$$a_{33} = 0$$
Las invariantes de esta ecuación al transformar las coordenadas son los determinantes:
$$I_{1} = a_{11} + a_{22}$$
     |a11  a12|
I2 = |        |
     |a12  a22|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|$$
     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

sustituimos coeficientes
$$I_{1} = 4$$
     |4  0|
I2 = |    |
     |0  0|

$$I_{3} = \left|\begin{matrix}4 & 0 & -8\\0 & 0 & - \frac{1}{2}\\-8 & - \frac{1}{2} & 0\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}4 - \lambda & 0\\0 & - \lambda\end{matrix}\right|$$
     |4   -8|   | 0    -1/2|
K2 = |      | + |          |
     |-8  0 |   |-1/2   0  |

$$I_{1} = 4$$
$$I_{2} = 0$$
$$I_{3} = -1$$
$$I{\left(\lambda \right)} = \lambda^{2} - 4 \lambda$$
$$K_{2} = - \frac{257}{4}$$
Como
$$I_{2} = 0 \wedge I_{3} \neq 0$$
entonces por razón de tipos de rectas:
esta ecuación tiene el tipo : parábola
$$I_{1} \tilde y^{2} + 2 \tilde x \sqrt{- \frac{I_{3}}{I_{1}}} = 0$$
o
$$\tilde x + 4 \tilde y^{2} = 0$$
$$\tilde y^{2} = \frac{\tilde x}{4}$$
- está reducida a la forma canónica