Sr Examen

Otras calculadoras


2*x^2-x+3
  • ¿Cómo usar?

  • Gráfico de la función y =:
  • y=(x+1)^3 y=(x+1)^3
  • y=2x y=2x
  • 2*x^3-3*x 2*x^3-3*x
  • 3-x^2 3-x^2
  • Descomponer al cuadrado:
  • 2*x^2-x+3
  • Expresiones idénticas

  • dos *x^ dos -x+ tres
  • 2 multiplicar por x al cuadrado menos x más 3
  • dos multiplicar por x en el grado dos menos x más tres
  • 2*x2-x+3
  • 2*x²-x+3
  • 2*x en el grado 2-x+3
  • 2x^2-x+3
  • 2x2-x+3
  • Expresiones semejantes

  • 2*x^2+x+3
  • 2*x^2-x-3

Gráfico de la función y = 2*x^2-x+3

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
          2        
f(x) = 2*x  - x + 3
$$f{\left(x \right)} = \left(2 x^{2} - x\right) + 3$$
f = 2*x^2 - x + 3
Gráfico de la función
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$\left(2 x^{2} - x\right) + 3 = 0$$
Resolvermos esta ecuación
Solución no hallada,
puede ser que el gráfico no cruce el eje X
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en 2*x^2 - x + 3.
$$\left(2 \cdot 0^{2} - 0\right) + 3$$
Resultado:
$$f{\left(0 \right)} = 3$$
Punto:
(0, 3)
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$4 x - 1 = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = \frac{1}{4}$$
Signos de extremos en los puntos:
(1/4, 23/8)


Intervalos de crecimiento y decrecimiento de la función:
Hallemos los intervalos donde la función crece y decrece y también los puntos mínimos y máximos de la función, para lo cual miramos cómo se comporta la función en los extremos con desviación mínima del extremo:
Puntos mínimos de la función:
$$x_{1} = \frac{1}{4}$$
La función no tiene puntos máximos
Decrece en los intervalos
$$\left[\frac{1}{4}, \infty\right)$$
Crece en los intervalos
$$\left(-\infty, \frac{1}{4}\right]$$
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$4 = 0$$
Resolvermos esta ecuación
Soluciones no halladas,
tal vez la función no tenga flexiones
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
$$\lim_{x \to -\infty}\left(\left(2 x^{2} - x\right) + 3\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la izquierda
$$\lim_{x \to \infty}\left(\left(2 x^{2} - x\right) + 3\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la derecha
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función 2*x^2 - x + 3, dividida por x con x->+oo y x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\left(2 x^{2} - x\right) + 3}{x}\right) = -\infty$$
Tomamos como el límite
es decir,
no hay asíntota inclinada a la izquierda
$$\lim_{x \to \infty}\left(\frac{\left(2 x^{2} - x\right) + 3}{x}\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota inclinada a la derecha
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$\left(2 x^{2} - x\right) + 3 = 2 x^{2} + x + 3$$
- No
$$\left(2 x^{2} - x\right) + 3 = - 2 x^{2} - x - 3$$
- No
es decir, función
no es
par ni impar
Gráfico
Gráfico de la función y = 2*x^2-x+3