Sr Examen

Otras calculadoras


-x^3/(x+1)^2
  • ¿Cómo usar?

  • Gráfico de la función y =:
  • -sqrt(-1-x^2) -sqrt(-1-x^2)
  • 7-x-2*x^2 7-x-2*x^2
  • y=x^3+x y=x^3+x
  • y=(x^3)/(x^2-4) y=(x^3)/(x^2-4)
  • Expresiones idénticas

  • -x^ tres /(x+ uno)^ dos
  • menos x al cubo dividir por (x más 1) al cuadrado
  • menos x en el grado tres dividir por (x más uno) en el grado dos
  • -x3/(x+1)2
  • -x3/x+12
  • -x³/(x+1)²
  • -x en el grado 3/(x+1) en el grado 2
  • -x^3/x+1^2
  • -x^3 dividir por (x+1)^2
  • Expresiones semejantes

  • x^3/(x+1)^2
  • -x^3/(x-1)^2

Gráfico de la función y = -x^3/(x+1)^2

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
           3   
         -x    
f(x) = --------
              2
       (x + 1) 
$$f{\left(x \right)} = \frac{\left(-1\right) x^{3}}{\left(x + 1\right)^{2}}$$
f = (-x^3)/(x + 1)^2
Gráfico de la función
Dominio de definición de la función
Puntos en los que la función no está definida exactamente:
$$x_{1} = -1$$
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$\frac{\left(-1\right) x^{3}}{\left(x + 1\right)^{2}} = 0$$
Resolvermos esta ecuación
Puntos de cruce con el eje X:

Solución analítica
$$x_{1} = 0$$
Solución numérica
$$x_{1} = 0$$
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en (-x^3)/(x + 1)^2.
$$\frac{\left(-1\right) 0^{3}}{1^{2}}$$
Resultado:
$$f{\left(0 \right)} = 0$$
Punto:
(0, 0)
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$- \frac{x^{3} \left(- 2 x - 2\right)}{\left(x + 1\right)^{4}} - \frac{3 x^{2}}{\left(x + 1\right)^{2}} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = -3$$
$$x_{2} = 0$$
Signos de extremos en los puntos:
(-3, 27/4)

(0, 0)


Intervalos de crecimiento y decrecimiento de la función:
Hallemos los intervalos donde la función crece y decrece y también los puntos mínimos y máximos de la función, para lo cual miramos cómo se comporta la función en los extremos con desviación mínima del extremo:
Puntos mínimos de la función:
$$x_{1} = -3$$
La función no tiene puntos máximos
Decrece en los intervalos
$$\left[-3, \infty\right)$$
Crece en los intervalos
$$\left(-\infty, -3\right]$$
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$\frac{6 x \left(- \frac{x^{2}}{\left(x + 1\right)^{2}} + \frac{2 x}{x + 1} - 1\right)}{\left(x + 1\right)^{2}} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = 0$$
Además hay que calcular los límites de y'' para los argumentos tendientes a los puntos de indeterminación de la función:
Puntos donde hay indeterminación:
$$x_{1} = -1$$

$$\lim_{x \to -1^-}\left(\frac{6 x \left(- \frac{x^{2}}{\left(x + 1\right)^{2}} + \frac{2 x}{x + 1} - 1\right)}{\left(x + 1\right)^{2}}\right) = \infty$$
$$\lim_{x \to -1^+}\left(\frac{6 x \left(- \frac{x^{2}}{\left(x + 1\right)^{2}} + \frac{2 x}{x + 1} - 1\right)}{\left(x + 1\right)^{2}}\right) = \infty$$
- los límites son iguales, es decir omitimos el punto correspondiente

Intervalos de convexidad y concavidad:
Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
$$\left(-\infty, 0\right]$$
Convexa en los intervalos
$$\left[0, \infty\right)$$
Asíntotas verticales
Hay:
$$x_{1} = -1$$
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
$$\lim_{x \to -\infty}\left(\frac{\left(-1\right) x^{3}}{\left(x + 1\right)^{2}}\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la izquierda
$$\lim_{x \to \infty}\left(\frac{\left(-1\right) x^{3}}{\left(x + 1\right)^{2}}\right) = -\infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la derecha
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función (-x^3)/(x + 1)^2, dividida por x con x->+oo y x ->-oo
$$\lim_{x \to -\infty}\left(- \frac{x^{2}}{\left(x + 1\right)^{2}}\right) = -1$$
Tomamos como el límite
es decir,
ecuación de la asíntota inclinada a la izquierda:
$$y = - x$$
$$\lim_{x \to \infty}\left(- \frac{x^{2}}{\left(x + 1\right)^{2}}\right) = -1$$
Tomamos como el límite
es decir,
ecuación de la asíntota inclinada a la derecha:
$$y = - x$$
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$\frac{\left(-1\right) x^{3}}{\left(x + 1\right)^{2}} = \frac{x^{3}}{\left(1 - x\right)^{2}}$$
- No
$$\frac{\left(-1\right) x^{3}}{\left(x + 1\right)^{2}} = - \frac{x^{3}}{\left(1 - x\right)^{2}}$$
- No
es decir, función
no es
par ni impar
Gráfico
Gráfico de la función y = -x^3/(x+1)^2