Sr Examen

Otras calculadoras

  • ¿Cómo usar?

  • Gráfico de la función y =:
  • x^4-x^2+2 x^4-x^2+2
  • (x^2-5)/(x-3) (x^2-5)/(x-3)
  • (x^2-9)/(x^2-4) (x^2-9)/(x^2-4)
  • (x+1)*(x-2)^2 (x+1)*(x-2)^2
  • Límite de la función:
  • 3*x^(1/3) 3*x^(1/3)
  • Expresiones idénticas

  • tres *x^(uno / tres)
  • 3 multiplicar por x en el grado (1 dividir por 3)
  • tres multiplicar por x en el grado (uno dividir por tres)
  • 3*x(1/3)
  • 3*x1/3
  • 3x^(1/3)
  • 3x(1/3)
  • 3x1/3
  • 3x^1/3
  • 3*x^(1 dividir por 3)

Gráfico de la función y = 3*x^(1/3)

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
         3 ___
f(x) = 3*\/ x 
$$f{\left(x \right)} = 3 \sqrt[3]{x}$$
f = 3*x^(1/3)
Gráfico de la función
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$3 \sqrt[3]{x} = 0$$
Resolvermos esta ecuación
Puntos de cruce con el eje X:

Solución analítica
$$x_{1} = 0$$
Solución numérica
$$x_{1} = 0$$
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en 3*x^(1/3).
$$3 \sqrt[3]{0}$$
Resultado:
$$f{\left(0 \right)} = 0$$
Punto:
(0, 0)
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$\frac{1}{x^{\frac{2}{3}}} = 0$$
Resolvermos esta ecuación
Soluciones no halladas,
tal vez la función no tenga extremos
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$- \frac{2}{3 x^{\frac{5}{3}}} = 0$$
Resolvermos esta ecuación
Soluciones no halladas,
tal vez la función no tenga flexiones
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
$$\lim_{x \to -\infty}\left(3 \sqrt[3]{x}\right) = \infty \operatorname{sign}{\left(\sqrt[3]{-1} \right)}$$
Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la izquierda:
$$y = \infty \operatorname{sign}{\left(\sqrt[3]{-1} \right)}$$
$$\lim_{x \to \infty}\left(3 \sqrt[3]{x}\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la derecha
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función 3*x^(1/3), dividida por x con x->+oo y x ->-oo
$$\lim_{x \to -\infty}\left(\frac{3}{x^{\frac{2}{3}}}\right) = 0$$
Tomamos como el límite
es decir,
la inclinada coincide con la asíntota horizontal a la derecha
$$\lim_{x \to \infty}\left(\frac{3}{x^{\frac{2}{3}}}\right) = 0$$
Tomamos como el límite
es decir,
la inclinada coincide con la asíntota horizontal a la izquierda
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$3 \sqrt[3]{x} = 3 \sqrt[3]{- x}$$
- No
$$3 \sqrt[3]{x} = - 3 \sqrt[3]{- x}$$
- No
es decir, función
no es
par ni impar