Sr Examen

Otras calculadoras

Gráfico de la función y = ((x^2)-3x+2)/(x-4)

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
        2          
       x  - 3*x + 2
f(x) = ------------
          x - 4    
$$f{\left(x \right)} = \frac{\left(x^{2} - 3 x\right) + 2}{x - 4}$$
f = (x^2 - 3*x + 2)/(x - 4)
Gráfico de la función
Dominio de definición de la función
Puntos en los que la función no está definida exactamente:
$$x_{1} = 4$$
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$\frac{\left(x^{2} - 3 x\right) + 2}{x - 4} = 0$$
Resolvermos esta ecuación
Puntos de cruce con el eje X:

Solución analítica
$$x_{1} = 1$$
$$x_{2} = 2$$
Solución numérica
$$x_{1} = 1$$
$$x_{2} = 2$$
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en (x^2 - 3*x + 2)/(x - 4).
$$\frac{\left(0^{2} - 0\right) + 2}{-4}$$
Resultado:
$$f{\left(0 \right)} = - \frac{1}{2}$$
Punto:
(0, -1/2)
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$\frac{2 x - 3}{x - 4} - \frac{\left(x^{2} - 3 x\right) + 2}{\left(x - 4\right)^{2}} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = 4 - \sqrt{6}$$
$$x_{2} = \sqrt{6} + 4$$
Signos de extremos en los puntos:
                   /                 2          \  
               ___ |      /      ___\        ___|  
       ___  -\/ 6 *\-10 + \4 - \/ 6 /  + 3*\/ 6 /  
(4 - \/ 6, --------------------------------------)
                              6                    

                  /                 2          \ 
              ___ |      /      ___\        ___| 
       ___  \/ 6 *\-10 + \4 + \/ 6 /  - 3*\/ 6 / 
(4 + \/ 6, ------------------------------------)
                             6                   


Intervalos de crecimiento y decrecimiento de la función:
Hallemos los intervalos donde la función crece y decrece y también los puntos mínimos y máximos de la función, para lo cual miramos cómo se comporta la función en los extremos con desviación mínima del extremo:
Puntos mínimos de la función:
$$x_{1} = \sqrt{6} + 4$$
Puntos máximos de la función:
$$x_{1} = 4 - \sqrt{6}$$
Decrece en los intervalos
$$\left(-\infty, 4 - \sqrt{6}\right] \cup \left[\sqrt{6} + 4, \infty\right)$$
Crece en los intervalos
$$\left[4 - \sqrt{6}, \sqrt{6} + 4\right]$$
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$\frac{2 \left(1 - \frac{2 x - 3}{x - 4} + \frac{x^{2} - 3 x + 2}{\left(x - 4\right)^{2}}\right)}{x - 4} = 0$$
Resolvermos esta ecuación
Soluciones no halladas,
tal vez la función no tenga flexiones
Asíntotas verticales
Hay:
$$x_{1} = 4$$
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
$$\lim_{x \to -\infty}\left(\frac{\left(x^{2} - 3 x\right) + 2}{x - 4}\right) = -\infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la izquierda
$$\lim_{x \to \infty}\left(\frac{\left(x^{2} - 3 x\right) + 2}{x - 4}\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la derecha
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función (x^2 - 3*x + 2)/(x - 4), dividida por x con x->+oo y x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\left(x^{2} - 3 x\right) + 2}{x \left(x - 4\right)}\right) = 1$$
Tomamos como el límite
es decir,
ecuación de la asíntota inclinada a la izquierda:
$$y = x$$
$$\lim_{x \to \infty}\left(\frac{\left(x^{2} - 3 x\right) + 2}{x \left(x - 4\right)}\right) = 1$$
Tomamos como el límite
es decir,
ecuación de la asíntota inclinada a la derecha:
$$y = x$$
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$\frac{\left(x^{2} - 3 x\right) + 2}{x - 4} = \frac{x^{2} + 3 x + 2}{- x - 4}$$
- No
$$\frac{\left(x^{2} - 3 x\right) + 2}{x - 4} = - \frac{x^{2} + 3 x + 2}{- x - 4}$$
- No
es decir, función
no es
par ni impar