Sr Examen

Otras calculadoras


(x^2-2x-3)/(x+1)^3

Gráfico de la función y = (x^2-2x-3)/(x+1)^3

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
        2          
       x  - 2*x - 3
f(x) = ------------
                3  
         (x + 1)   
$$f{\left(x \right)} = \frac{\left(x^{2} - 2 x\right) - 3}{\left(x + 1\right)^{3}}$$
f = (x^2 - 2*x - 3)/(x + 1)^3
Gráfico de la función
Dominio de definición de la función
Puntos en los que la función no está definida exactamente:
$$x_{1} = -1$$
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$\frac{\left(x^{2} - 2 x\right) - 3}{\left(x + 1\right)^{3}} = 0$$
Resolvermos esta ecuación
Puntos de cruce con el eje X:

Solución analítica
$$x_{1} = 3$$
Solución numérica
$$x_{1} = 3$$
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en (x^2 - 2*x - 3)/(x + 1)^3.
$$\frac{-3 + \left(0^{2} - 0\right)}{1^{3}}$$
Resultado:
$$f{\left(0 \right)} = -3$$
Punto:
(0, -3)
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$\frac{2 x - 2}{\left(x + 1\right)^{3}} - \frac{3 \left(\left(x^{2} - 2 x\right) - 3\right)}{\left(x + 1\right)^{4}} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = 7$$
Signos de extremos en los puntos:
(7, 1/16)


Intervalos de crecimiento y decrecimiento de la función:
Hallemos los intervalos donde la función crece y decrece y también los puntos mínimos y máximos de la función, para lo cual miramos cómo se comporta la función en los extremos con desviación mínima del extremo:
La función no tiene puntos mínimos
Puntos máximos de la función:
$$x_{1} = 7$$
Decrece en los intervalos
$$\left(-\infty, 7\right]$$
Crece en los intervalos
$$\left[7, \infty\right)$$
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$\frac{2 \left(- \frac{6 \left(x - 1\right)}{x + 1} + 1 - \frac{6 \left(- x^{2} + 2 x + 3\right)}{\left(x + 1\right)^{2}}\right)}{\left(x + 1\right)^{3}} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = 11$$
Además hay que calcular los límites de y'' para los argumentos tendientes a los puntos de indeterminación de la función:
Puntos donde hay indeterminación:
$$x_{1} = -1$$

$$\lim_{x \to -1^-}\left(\frac{2 \left(- \frac{6 \left(x - 1\right)}{x + 1} + 1 - \frac{6 \left(- x^{2} + 2 x + 3\right)}{\left(x + 1\right)^{2}}\right)}{\left(x + 1\right)^{3}}\right) = -\infty$$
$$\lim_{x \to -1^+}\left(\frac{2 \left(- \frac{6 \left(x - 1\right)}{x + 1} + 1 - \frac{6 \left(- x^{2} + 2 x + 3\right)}{\left(x + 1\right)^{2}}\right)}{\left(x + 1\right)^{3}}\right) = -\infty$$
- los límites son iguales, es decir omitimos el punto correspondiente

Intervalos de convexidad y concavidad:
Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
$$\left[11, \infty\right)$$
Convexa en los intervalos
$$\left(-\infty, 11\right]$$
Asíntotas verticales
Hay:
$$x_{1} = -1$$
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
$$\lim_{x \to -\infty}\left(\frac{\left(x^{2} - 2 x\right) - 3}{\left(x + 1\right)^{3}}\right) = 0$$
Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la izquierda:
$$y = 0$$
$$\lim_{x \to \infty}\left(\frac{\left(x^{2} - 2 x\right) - 3}{\left(x + 1\right)^{3}}\right) = 0$$
Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la derecha:
$$y = 0$$
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función (x^2 - 2*x - 3)/(x + 1)^3, dividida por x con x->+oo y x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\left(x^{2} - 2 x\right) - 3}{x \left(x + 1\right)^{3}}\right) = 0$$
Tomamos como el límite
es decir,
la inclinada coincide con la asíntota horizontal a la derecha
$$\lim_{x \to \infty}\left(\frac{\left(x^{2} - 2 x\right) - 3}{x \left(x + 1\right)^{3}}\right) = 0$$
Tomamos como el límite
es decir,
la inclinada coincide con la asíntota horizontal a la izquierda
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$\frac{\left(x^{2} - 2 x\right) - 3}{\left(x + 1\right)^{3}} = \frac{x^{2} + 2 x - 3}{\left(1 - x\right)^{3}}$$
- No
$$\frac{\left(x^{2} - 2 x\right) - 3}{\left(x + 1\right)^{3}} = - \frac{x^{2} + 2 x - 3}{\left(1 - x\right)^{3}}$$
- No
es decir, función
no es
par ni impar
Gráfico
Gráfico de la función y = (x^2-2x-3)/(x+1)^3