Sr Examen

Otras calculadoras

sqrt(3)*x^2+2*x*y-sqrt(2)*y^2-2*x-2*sqrt(3)y=0 forma canónica

El profesor se sorprenderá mucho al ver tu solución correcta😉

v

Gráfico:

x: [, ]
y: [, ]
z: [, ]

Calidad:

 (Cantidad de puntos en el eje)

Tipo de trazado:

Solución

Ha introducido [src]
         ___  2     ___  2         ___            
-2*x + \/ 3 *x  - \/ 2 *y  - 2*y*\/ 3  + 2*x*y = 0
$$\sqrt{3} x^{2} + 2 x y - 2 x - \sqrt{2} y^{2} - 2 \sqrt{3} y = 0$$
sqrt(3)*x^2 + 2*x*y - 2*x - sqrt(2)*y^2 - 2*sqrt(3)*y = 0
Solución detallada
Se da la ecuación de la línea de 2-o orden:
$$\sqrt{3} x^{2} + 2 x y - 2 x - \sqrt{2} y^{2} - 2 \sqrt{3} y = 0$$
Esta ecuación tiene la forma:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
donde
$$a_{11} = \sqrt{3}$$
$$a_{12} = 1$$
$$a_{13} = -1$$
$$a_{22} = - \sqrt{2}$$
$$a_{23} = - \sqrt{3}$$
$$a_{33} = 0$$
Calculemos el determinante
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
o, sustituimos
$$\Delta = \left|\begin{matrix}\sqrt{3} & 1\\1 & - \sqrt{2}\end{matrix}\right|$$
$$\Delta = - \sqrt{6} - 1$$
Como
$$\Delta$$
no es igual a 0, entonces
hallamos el centro de coordenadas canónicas. Para eso resolvemos el sistema de ecuaciones
$$a_{11} x_{0} + a_{12} y_{0} + a_{13} = 0$$
$$a_{12} x_{0} + a_{22} y_{0} + a_{23} = 0$$
sustituimos coeficientes
$$\sqrt{3} x_{0} + y_{0} - 1 = 0$$
$$x_{0} - \sqrt{2} y_{0} - \sqrt{3} = 0$$
entonces
$$x_{0} = \frac{\sqrt{6} + 3}{\sqrt{3} + 3 \sqrt{2}}$$
$$y_{0} = - \frac{2 \sqrt{3}}{\sqrt{3} + 3 \sqrt{2}}$$
Así pasamos a la ecuación en el sistema de coordenadas O'x'y'
$$a'_{33} + a_{11} x'^{2} + 2 a_{12} x' y' + a_{22} y'^{2} = 0$$
donde
$$a'_{33} = a_{13} x_{0} + a_{23} y_{0} + a_{33}$$
o
$$a'_{33} = - x_{0} - \sqrt{3} y_{0}$$
$$a'_{33} = - \frac{\sqrt{6} + 3}{\sqrt{3} + 3 \sqrt{2}} + \frac{6}{\sqrt{3} + 3 \sqrt{2}}$$
entonces la ecuación se transformará en
$$\sqrt{3} x'^{2} + 2 x' y' - \sqrt{2} y'^{2} - \frac{\sqrt{6} + 3}{\sqrt{3} + 3 \sqrt{2}} + \frac{6}{\sqrt{3} + 3 \sqrt{2}} = 0$$
Hacemos el giro del sistema de coordenadas obtenido al ángulo de φ
$$x' = \tilde x \cos{\left(\phi \right)} - \tilde y \sin{\left(\phi \right)}$$
$$y' = \tilde x \sin{\left(\phi \right)} + \tilde y \cos{\left(\phi \right)}$$
φ - se define de la fórmula
$$\cot{\left(2 \phi \right)} = \frac{a_{11} - a_{22}}{2 a_{12}}$$
sustituimos coeficientes
$$\cot{\left(2 \phi \right)} = \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}$$
entonces
$$\phi = \frac{\operatorname{acot}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \right)}}{2}$$
$$\sin{\left(2 \phi \right)} = \frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right) \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}}$$
$$\cos{\left(2 \phi \right)} = \frac{1}{\sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}}$$
$$\cos{\left(\phi \right)} = \sqrt{\frac{\cos{\left(2 \phi \right)}}{2} + \frac{1}{2}}$$
$$\sin{\left(\phi \right)} = \sqrt{1 - \cos^{2}{\left(\phi \right)}}$$
$$\cos{\left(\phi \right)} = \sqrt{\frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}} + \frac{1}{2}}$$
$$\sin{\left(\phi \right)} = \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}}}$$
sustituimos coeficientes
$$x' = \tilde x \sqrt{\frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}} + \frac{1}{2}} - \tilde y \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}}}$$
$$y' = \tilde x \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}}} + \tilde y \sqrt{\frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}} + \frac{1}{2}}$$
entonces la ecuación se transformará de
$$\sqrt{3} x'^{2} + 2 x' y' - \sqrt{2} y'^{2} - \frac{\sqrt{6} + 3}{\sqrt{3} + 3 \sqrt{2}} + \frac{6}{\sqrt{3} + 3 \sqrt{2}} = 0$$
en
$$- \sqrt{2} \left(\tilde x \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}}} + \tilde y \sqrt{\frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}} + \frac{1}{2}}\right)^{2} + 2 \left(\tilde x \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}}} + \tilde y \sqrt{\frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}} + \frac{1}{2}}\right) \left(\tilde x \sqrt{\frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}} + \frac{1}{2}} - \tilde y \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}}}\right) + \sqrt{3} \left(\tilde x \sqrt{\frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}} + \frac{1}{2}} - \tilde y \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}}}\right)^{2} - \frac{\sqrt{6} + 3}{\sqrt{3} + 3 \sqrt{2}} + \frac{6}{\sqrt{3} + 3 \sqrt{2}} = 0$$
simplificamos
$$- \frac{\sqrt{2} \tilde x^{2}}{2} + 2 \tilde x^{2} \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}}} \sqrt{\frac{1}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}} + \frac{1}{2}} + \frac{\sqrt{2} \tilde x^{2}}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}} + \frac{\sqrt{3} \tilde x^{2}}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}} + \frac{\sqrt{3} \tilde x^{2}}{2} - 2 \sqrt{3} \tilde x \tilde y \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}}} \sqrt{\frac{1}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}} + \frac{1}{2}} - 2 \sqrt{2} \tilde x \tilde y \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}}} \sqrt{\frac{1}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}} + \frac{1}{2}} + \frac{2 \tilde x \tilde y}{\sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}} - \frac{\sqrt{3} \tilde y^{2}}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}} - \frac{\sqrt{2} \tilde y^{2}}{2} - \frac{\sqrt{2} \tilde y^{2}}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}} - 2 \tilde y^{2} \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}}} \sqrt{\frac{1}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}} + \frac{1}{2}} + \frac{\sqrt{3} \tilde y^{2}}{2} - \frac{\sqrt{6}}{\sqrt{3} + 3 \sqrt{2}} + \frac{3}{\sqrt{3} + 3 \sqrt{2}} = 0$$
$$\frac{\frac{\left(\sqrt{3} + 3 \sqrt{2}\right) \sqrt{2 \sqrt{6} + 9} \left(- \sqrt{2} \tilde x^{2} + \sqrt{3} \tilde x^{2} - \sqrt{2} \tilde y^{2} + \sqrt{3} \tilde y^{2}\right)}{2} + \frac{\left(\sqrt{3} + 3 \sqrt{2}\right) \left(4 \tilde x^{2} + \tilde x^{2} \sqrt{4 \sqrt{6} + 10} + \tilde x^{2} \sqrt{6 \sqrt{6} + 15} - 4 \sqrt{3} \tilde x \tilde y - 4 \sqrt{2} \tilde x \tilde y + 4 \tilde x \tilde y \sqrt{2 \sqrt{6} + 5} - \tilde y^{2} \sqrt{6 \sqrt{6} + 15} - \tilde y^{2} \sqrt{4 \sqrt{6} + 10} - 4 \tilde y^{2}\right)}{2} + \frac{\left(6 - 2 \sqrt{6}\right) \sqrt{2 \sqrt{6} + 9}}{2}}{\left(\sqrt{3} + 3 \sqrt{2}\right) \sqrt{2 \sqrt{6} + 9}} = 0$$
Esta ecuación es una hipérbola
None

- está reducida a la forma canónica
Centro de las coordenadas canónicas en el punto O
          ___              ___    
    3 + \/ 6          -2*\/ 3     
(---------------, ---------------)
   ___       ___    ___       ___ 
 \/ 3  + 3*\/ 2   \/ 3  + 3*\/ 2  

Base de las coordenadas canónicas
$$\vec e_1 = \left( \sqrt{\frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}} + \frac{1}{2}}, \ \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}}}\right)$$
$$\vec e_2 = \left( - \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}}}, \ \sqrt{\frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}} + \frac{1}{2}}\right)$$
Método de invariantes
Se da la ecuación de la línea de 2-o orden:
$$\sqrt{3} x^{2} + 2 x y - 2 x - \sqrt{2} y^{2} - 2 \sqrt{3} y = 0$$
Esta ecuación tiene la forma:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
donde
$$a_{11} = \sqrt{3}$$
$$a_{12} = 1$$
$$a_{13} = -1$$
$$a_{22} = - \sqrt{2}$$
$$a_{23} = - \sqrt{3}$$
$$a_{33} = 0$$
Las invariantes de esta ecuación al transformar las coordenadas son los determinantes:
$$I_{1} = a_{11} + a_{22}$$
     |a11  a12|
I2 = |        |
     |a12  a22|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|$$
     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

sustituimos coeficientes
$$I_{1} = - \sqrt{2} + \sqrt{3}$$
     |  ___        |
     |\/ 3     1   |
I2 = |             |
     |          ___|
     |  1    -\/ 2 |

$$I_{3} = \left|\begin{matrix}\sqrt{3} & 1 & -1\\1 & - \sqrt{2} & - \sqrt{3}\\-1 & - \sqrt{3} & 0\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda + \sqrt{3} & 1\\1 & - \lambda - \sqrt{2}\end{matrix}\right|$$
     |  ___    |   |   ___     ___|
     |\/ 3   -1|   |-\/ 2   -\/ 3 |
K2 = |         | + |              |
     | -1    0 |   |   ___        |
        |-\/ 3     0   |

$$I_{1} = - \sqrt{2} + \sqrt{3}$$
$$I_{2} = - \sqrt{6} - 1$$
$$I_{3} = - \sqrt{3} + \sqrt{2}$$
$$I{\left(\lambda \right)} = \lambda^{2} - \sqrt{3} \lambda + \sqrt{2} \lambda - \sqrt{6} - 1$$
$$K_{2} = -4$$
Como
$$I_{2} < 0 \wedge I_{3} \neq 0$$
entonces por razón de tipos de rectas:
esta ecuación tiene el tipo : hipérbola
Formulamos la ecuación característica para nuestra línea:
$$- I_{1} \lambda + I_{2} + \lambda^{2} = 0$$
o
$$\lambda^{2} - \lambda \left(- \sqrt{2} + \sqrt{3}\right) - \sqrt{6} - 1 = 0$$
$$\lambda_{1} = - \frac{\sqrt{2 \sqrt{6} + 9}}{2} - \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}$$
$$\lambda_{2} = - \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} + \frac{\sqrt{2 \sqrt{6} + 9}}{2}$$
entonces la forma canónica de la ecuación será
$$\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2} + \frac{I_{3}}{I_{2}} = 0$$
o
$$\tilde x^{2} \left(- \frac{\sqrt{2 \sqrt{6} + 9}}{2} - \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right) + \tilde y^{2} \left(- \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} + \frac{\sqrt{2 \sqrt{6} + 9}}{2}\right) + \frac{- \sqrt{3} + \sqrt{2}}{- \sqrt{6} - 1} = 0$$
$$\frac{\tilde x^{2}}{\frac{1}{1 + \sqrt{6}} \left(- \sqrt{2} + \sqrt{3}\right) \frac{1}{- \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} + \frac{\sqrt{2 \sqrt{6} + 9}}{2}}} - \frac{\tilde y^{2}}{\frac{1}{1 + \sqrt{6}} \left(- \sqrt{2} + \sqrt{3}\right) \frac{1}{- \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} + \frac{\sqrt{2 \sqrt{6} + 9}}{2}}} = 1$$
- está reducida a la forma canónica