Se da la ecuación de la línea de 2-o orden:
$$\sqrt{3} x^{2} + 2 x y - 2 x - \sqrt{2} y^{2} - 2 \sqrt{3} y = 0$$
Esta ecuación tiene la forma:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
donde
$$a_{11} = \sqrt{3}$$
$$a_{12} = 1$$
$$a_{13} = -1$$
$$a_{22} = - \sqrt{2}$$
$$a_{23} = - \sqrt{3}$$
$$a_{33} = 0$$
Calculemos el determinante
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
o, sustituimos
$$\Delta = \left|\begin{matrix}\sqrt{3} & 1\\1 & - \sqrt{2}\end{matrix}\right|$$
$$\Delta = - \sqrt{6} - 1$$
Como
$$\Delta$$
no es igual a 0, entonces
hallamos el centro de coordenadas canónicas. Para eso resolvemos el sistema de ecuaciones
$$a_{11} x_{0} + a_{12} y_{0} + a_{13} = 0$$
$$a_{12} x_{0} + a_{22} y_{0} + a_{23} = 0$$
sustituimos coeficientes
$$\sqrt{3} x_{0} + y_{0} - 1 = 0$$
$$x_{0} - \sqrt{2} y_{0} - \sqrt{3} = 0$$
entonces
$$x_{0} = \frac{\sqrt{6} + 3}{\sqrt{3} + 3 \sqrt{2}}$$
$$y_{0} = - \frac{2 \sqrt{3}}{\sqrt{3} + 3 \sqrt{2}}$$
Así pasamos a la ecuación en el sistema de coordenadas O'x'y'
$$a'_{33} + a_{11} x'^{2} + 2 a_{12} x' y' + a_{22} y'^{2} = 0$$
donde
$$a'_{33} = a_{13} x_{0} + a_{23} y_{0} + a_{33}$$
o
$$a'_{33} = - x_{0} - \sqrt{3} y_{0}$$
$$a'_{33} = - \frac{\sqrt{6} + 3}{\sqrt{3} + 3 \sqrt{2}} + \frac{6}{\sqrt{3} + 3 \sqrt{2}}$$
entonces la ecuación se transformará en
$$\sqrt{3} x'^{2} + 2 x' y' - \sqrt{2} y'^{2} - \frac{\sqrt{6} + 3}{\sqrt{3} + 3 \sqrt{2}} + \frac{6}{\sqrt{3} + 3 \sqrt{2}} = 0$$
Hacemos el giro del sistema de coordenadas obtenido al ángulo de φ
$$x' = \tilde x \cos{\left(\phi \right)} - \tilde y \sin{\left(\phi \right)}$$
$$y' = \tilde x \sin{\left(\phi \right)} + \tilde y \cos{\left(\phi \right)}$$
φ - se define de la fórmula
$$\cot{\left(2 \phi \right)} = \frac{a_{11} - a_{22}}{2 a_{12}}$$
sustituimos coeficientes
$$\cot{\left(2 \phi \right)} = \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}$$
entonces
$$\phi = \frac{\operatorname{acot}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \right)}}{2}$$
$$\sin{\left(2 \phi \right)} = \frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right) \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}}$$
$$\cos{\left(2 \phi \right)} = \frac{1}{\sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}}$$
$$\cos{\left(\phi \right)} = \sqrt{\frac{\cos{\left(2 \phi \right)}}{2} + \frac{1}{2}}$$
$$\sin{\left(\phi \right)} = \sqrt{1 - \cos^{2}{\left(\phi \right)}}$$
$$\cos{\left(\phi \right)} = \sqrt{\frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}} + \frac{1}{2}}$$
$$\sin{\left(\phi \right)} = \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}}}$$
sustituimos coeficientes
$$x' = \tilde x \sqrt{\frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}} + \frac{1}{2}} - \tilde y \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}}}$$
$$y' = \tilde x \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}}} + \tilde y \sqrt{\frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}} + \frac{1}{2}}$$
entonces la ecuación se transformará de
$$\sqrt{3} x'^{2} + 2 x' y' - \sqrt{2} y'^{2} - \frac{\sqrt{6} + 3}{\sqrt{3} + 3 \sqrt{2}} + \frac{6}{\sqrt{3} + 3 \sqrt{2}} = 0$$
en
$$- \sqrt{2} \left(\tilde x \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}}} + \tilde y \sqrt{\frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}} + \frac{1}{2}}\right)^{2} + 2 \left(\tilde x \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}}} + \tilde y \sqrt{\frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}} + \frac{1}{2}}\right) \left(\tilde x \sqrt{\frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}} + \frac{1}{2}} - \tilde y \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}}}\right) + \sqrt{3} \left(\tilde x \sqrt{\frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}} + \frac{1}{2}} - \tilde y \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}}}\right)^{2} - \frac{\sqrt{6} + 3}{\sqrt{3} + 3 \sqrt{2}} + \frac{6}{\sqrt{3} + 3 \sqrt{2}} = 0$$
simplificamos
$$- \frac{\sqrt{2} \tilde x^{2}}{2} + 2 \tilde x^{2} \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}}} \sqrt{\frac{1}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}} + \frac{1}{2}} + \frac{\sqrt{2} \tilde x^{2}}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}} + \frac{\sqrt{3} \tilde x^{2}}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}} + \frac{\sqrt{3} \tilde x^{2}}{2} - 2 \sqrt{3} \tilde x \tilde y \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}}} \sqrt{\frac{1}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}} + \frac{1}{2}} - 2 \sqrt{2} \tilde x \tilde y \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}}} \sqrt{\frac{1}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}} + \frac{1}{2}} + \frac{2 \tilde x \tilde y}{\sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}} - \frac{\sqrt{3} \tilde y^{2}}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}} - \frac{\sqrt{2} \tilde y^{2}}{2} - \frac{\sqrt{2} \tilde y^{2}}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}} - 2 \tilde y^{2} \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}}} \sqrt{\frac{1}{2 \sqrt{\frac{1}{\frac{\sqrt{6}}{2} + \frac{5}{4}} + 1}} + \frac{1}{2}} + \frac{\sqrt{3} \tilde y^{2}}{2} - \frac{\sqrt{6}}{\sqrt{3} + 3 \sqrt{2}} + \frac{3}{\sqrt{3} + 3 \sqrt{2}} = 0$$
$$\frac{\frac{\left(\sqrt{3} + 3 \sqrt{2}\right) \sqrt{2 \sqrt{6} + 9} \left(- \sqrt{2} \tilde x^{2} + \sqrt{3} \tilde x^{2} - \sqrt{2} \tilde y^{2} + \sqrt{3} \tilde y^{2}\right)}{2} + \frac{\left(\sqrt{3} + 3 \sqrt{2}\right) \left(4 \tilde x^{2} + \tilde x^{2} \sqrt{4 \sqrt{6} + 10} + \tilde x^{2} \sqrt{6 \sqrt{6} + 15} - 4 \sqrt{3} \tilde x \tilde y - 4 \sqrt{2} \tilde x \tilde y + 4 \tilde x \tilde y \sqrt{2 \sqrt{6} + 5} - \tilde y^{2} \sqrt{6 \sqrt{6} + 15} - \tilde y^{2} \sqrt{4 \sqrt{6} + 10} - 4 \tilde y^{2}\right)}{2} + \frac{\left(6 - 2 \sqrt{6}\right) \sqrt{2 \sqrt{6} + 9}}{2}}{\left(\sqrt{3} + 3 \sqrt{2}\right) \sqrt{2 \sqrt{6} + 9}} = 0$$
Esta ecuación es una hipérbola
None
- está reducida a la forma canónica
Centro de las coordenadas canónicas en el punto O
___ ___
3 + \/ 6 -2*\/ 3
(---------------, ---------------)
___ ___ ___ ___
\/ 3 + 3*\/ 2 \/ 3 + 3*\/ 2
Base de las coordenadas canónicas
$$\vec e_1 = \left( \sqrt{\frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}} + \frac{1}{2}}, \ \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}}}\right)$$
$$\vec e_2 = \left( - \sqrt{\frac{1}{2} - \frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}}}, \ \sqrt{\frac{1}{2 \sqrt{\frac{1}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\right)^{2}} + 1}} + \frac{1}{2}}\right)$$