Sr Examen

xy+xz+zy=1 forma canónica

El profesor se sorprenderá mucho al ver tu solución correcta😉

v

Gráfico:

x: [, ]
y: [, ]
z: [, ]

Calidad:

 (Cantidad de puntos en el eje)

Tipo de trazado:

Solución

Ha introducido [src]
-1 + x*y + x*z + y*z = 0
xy+xz+yz1=0x y + x z + y z - 1 = 0
x*y + x*z + y*z - 1 = 0
Método de invariantes
Se da la ecuación de superficie de 2 grado:
xy+xz+yz1=0x y + x z + y z - 1 = 0
Esta ecuación tiene la forma:
a11x2+2a12xy+2a13xz+2a14x+a22y2+2a23yz+2a24y+a33z2+2a34z+a44=0a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x z + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} y z + 2 a_{24} y + a_{33} z^{2} + 2 a_{34} z + a_{44} = 0
donde
a11=0a_{11} = 0
a12=12a_{12} = \frac{1}{2}
a13=12a_{13} = \frac{1}{2}
a14=0a_{14} = 0
a22=0a_{22} = 0
a23=12a_{23} = \frac{1}{2}
a24=0a_{24} = 0
a33=0a_{33} = 0
a34=0a_{34} = 0
a44=1a_{44} = -1
Las invariantes de esta ecuación al transformar las coordenadas son los determinantes:
I1=a11+a22+a33I_{1} = a_{11} + a_{22} + a_{33}
     |a11  a12|   |a22  a23|   |a11  a13|
I2 = |        | + |        | + |        |
     |a12  a22|   |a23  a33|   |a13  a33|

I3=a11a12a13a12a22a23a13a23a33I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|
I4=a11a12a13a14a12a22a23a24a13a23a33a34a14a24a34a44I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|
I(λ)=a11λa12a13a12a22λa23a13a23a33λI{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|
     |a11  a14|   |a22  a24|   |a33  a34|
K2 = |        | + |        | + |        |
     |a14  a44|   |a24  a44|   |a34  a44|

     |a11  a12  a14|   |a22  a23  a24|   |a11  a13  a14|
     |             |   |             |   |             |
K3 = |a12  a22  a24| + |a23  a33  a34| + |a13  a33  a34|
     |             |   |             |   |             |
     |a14  a24  a44|   |a24  a34  a44|   |a14  a34  a44|

sustituimos coeficientes
I1=0I_{1} = 0
     | 0   1/2|   | 0   1/2|   | 0   1/2|
I2 = |        | + |        | + |        |
     |1/2   0 |   |1/2   0 |   |1/2   0 |

I3=012121201212120I_{3} = \left|\begin{matrix}0 & \frac{1}{2} & \frac{1}{2}\\\frac{1}{2} & 0 & \frac{1}{2}\\\frac{1}{2} & \frac{1}{2} & 0\end{matrix}\right|
I4=0121201201201212000001I_{4} = \left|\begin{matrix}0 & \frac{1}{2} & \frac{1}{2} & 0\\\frac{1}{2} & 0 & \frac{1}{2} & 0\\\frac{1}{2} & \frac{1}{2} & 0 & 0\\0 & 0 & 0 & -1\end{matrix}\right|
I(λ)=λ121212λ121212λI{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & \frac{1}{2} & \frac{1}{2}\\\frac{1}{2} & - \lambda & \frac{1}{2}\\\frac{1}{2} & \frac{1}{2} & - \lambda\end{matrix}\right|
     |0  0 |   |0  0 |   |0  0 |
K2 = |     | + |     | + |     |
     |0  -1|   |0  -1|   |0  -1|

     | 0   1/2  0 |   | 0   1/2  0 |   | 0   1/2  0 |
     |            |   |            |   |            |
K3 = |1/2   0   0 | + |1/2   0   0 | + |1/2   0   0 |
     |            |   |            |   |            |
     | 0    0   -1|   | 0    0   -1|   | 0    0   -1|

I1=0I_{1} = 0
I2=34I_{2} = - \frac{3}{4}
I3=14I_{3} = \frac{1}{4}
I4=14I_{4} = - \frac{1}{4}
I(λ)=λ3+3λ4+14I{\left(\lambda \right)} = - \lambda^{3} + \frac{3 \lambda}{4} + \frac{1}{4}
K2=0K_{2} = 0
K3=34K_{3} = \frac{3}{4}
Como
I3 != 0

entonces por razón de tipos de rectas:
hay que
Formulamos la ecuación característica para nuestra superficie:
I1λ2+I2λI3+λ3=0- I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0
o
λ33λ414=0\lambda^{3} - \frac{3 \lambda}{4} - \frac{1}{4} = 0
λ1=1\lambda_{1} = 1
λ2=12\lambda_{2} = - \frac{1}{2}
λ3=12\lambda_{3} = - \frac{1}{2}
entonces la forma canónica de la ecuación será
(z~2λ3+(x~2λ1+y~2λ2))+I4I3=0\left(\tilde z^{2} \lambda_{3} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right)\right) + \frac{I_{4}}{I_{3}} = 0
x~2y~22z~221=0\tilde x^{2} - \frac{\tilde y^{2}}{2} - \frac{\tilde z^{2}}{2} - 1 = 0
x~2(11)2+(y~2(21)2+z~2(21)2)=1- \frac{\tilde x^{2}}{\left(1^{-1}\right)^{2}} + \left(\frac{\tilde y^{2}}{\left(\frac{\sqrt{2}}{1}\right)^{2}} + \frac{\tilde z^{2}}{\left(\frac{\sqrt{2}}{1}\right)^{2}}\right) = -1
es la ecuación para el tipo hiperboloide bilateral
- está reducida a la forma canónica