Se da la ecuación de superficie de 2 grado:
a x − 2 y + 9 = 0 a x - 2 y + 9 = 0 a x − 2 y + 9 = 0 Esta ecuación tiene la forma:
a 2 a 33 + 2 a a 13 x + 2 a a 23 y + 2 a a 34 + a 11 x 2 + 2 a 12 x y + 2 a 14 x + a 22 y 2 + 2 a 24 y + a 44 = 0 a^{2} a_{33} + 2 a a_{13} x + 2 a a_{23} y + 2 a a_{34} + a_{11} x^{2} + 2 a_{12} x y + 2 a_{14} x + a_{22} y^{2} + 2 a_{24} y + a_{44} = 0 a 2 a 33 + 2 a a 13 x + 2 a a 23 y + 2 a a 34 + a 11 x 2 + 2 a 12 x y + 2 a 14 x + a 22 y 2 + 2 a 24 y + a 44 = 0 donde
a 11 = 0 a_{11} = 0 a 11 = 0 a 12 = 0 a_{12} = 0 a 12 = 0 a 13 = 1 2 a_{13} = \frac{1}{2} a 13 = 2 1 a 14 = 0 a_{14} = 0 a 14 = 0 a 22 = 0 a_{22} = 0 a 22 = 0 a 23 = 0 a_{23} = 0 a 23 = 0 a 24 = − 1 a_{24} = -1 a 24 = − 1 a 33 = 0 a_{33} = 0 a 33 = 0 a 34 = 0 a_{34} = 0 a 34 = 0 a 44 = 9 a_{44} = 9 a 44 = 9 Las invariantes de esta ecuación al transformar las coordenadas son los determinantes:
I 1 = a 11 + a 22 + a 33 I_{1} = a_{11} + a_{22} + a_{33} I 1 = a 11 + a 22 + a 33 |a11 a12| |a22 a23| |a11 a13|
I2 = | | + | | + | |
|a12 a22| |a23 a33| |a13 a33| I 3 = ∣ a 11 a 12 a 13 a 12 a 22 a 23 a 13 a 23 a 33 ∣ I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right| I 3 = a 11 a 12 a 13 a 12 a 22 a 23 a 13 a 23 a 33 I 4 = ∣ a 11 a 12 a 13 a 14 a 12 a 22 a 23 a 24 a 13 a 23 a 33 a 34 a 14 a 24 a 34 a 44 ∣ I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right| I 4 = a 11 a 12 a 13 a 14 a 12 a 22 a 23 a 24 a 13 a 23 a 33 a 34 a 14 a 24 a 34 a 44 I ( λ ) = ∣ a 11 − λ a 12 a 13 a 12 a 22 − λ a 23 a 13 a 23 a 33 − λ ∣ I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right| I ( λ ) = a 11 − λ a 12 a 13 a 12 a 22 − λ a 23 a 13 a 23 a 33 − λ |a11 a14| |a22 a24| |a33 a34|
K2 = | | + | | + | |
|a14 a44| |a24 a44| |a34 a44| |a11 a12 a14| |a22 a23 a24| |a11 a13 a14|
| | | | | |
K3 = |a12 a22 a24| + |a23 a33 a34| + |a13 a33 a34|
| | | | | |
|a14 a24 a44| |a24 a34 a44| |a14 a34 a44| sustituimos coeficientes
I 1 = 0 I_{1} = 0 I 1 = 0 |0 0| |0 0| | 0 1/2|
I2 = | | + | | + | |
|0 0| |0 0| |1/2 0 | I 3 = ∣ 0 0 1 2 0 0 0 1 2 0 0 ∣ I_{3} = \left|\begin{matrix}0 & 0 & \frac{1}{2}\\0 & 0 & 0\\\frac{1}{2} & 0 & 0\end{matrix}\right| I 3 = 0 0 2 1 0 0 0 2 1 0 0 I 4 = ∣ 0 0 1 2 0 0 0 0 − 1 1 2 0 0 0 0 − 1 0 9 ∣ I_{4} = \left|\begin{matrix}0 & 0 & \frac{1}{2} & 0\\0 & 0 & 0 & -1\\\frac{1}{2} & 0 & 0 & 0\\0 & -1 & 0 & 9\end{matrix}\right| I 4 = 0 0 2 1 0 0 0 0 − 1 2 1 0 0 0 0 − 1 0 9 I ( λ ) = ∣ − λ 0 1 2 0 − λ 0 1 2 0 − λ ∣ I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & 0 & \frac{1}{2}\\0 & - \lambda & 0\\\frac{1}{2} & 0 & - \lambda\end{matrix}\right| I ( λ ) = − λ 0 2 1 0 − λ 0 2 1 0 − λ |0 0| |0 -1| |0 0|
K2 = | | + | | + | |
|0 9| |-1 9 | |0 9| |0 0 0 | |0 0 -1| | 0 1/2 0|
| | | | | |
K3 = |0 0 -1| + |0 0 0 | + |1/2 0 0|
| | | | | |
|0 -1 9 | |-1 0 9 | | 0 0 9| I 1 = 0 I_{1} = 0 I 1 = 0 I 2 = − 1 4 I_{2} = - \frac{1}{4} I 2 = − 4 1 I 3 = 0 I_{3} = 0 I 3 = 0 I 4 = 1 4 I_{4} = \frac{1}{4} I 4 = 4 1 I ( λ ) = − λ 3 + λ 4 I{\left(\lambda \right)} = - \lambda^{3} + \frac{\lambda}{4} I ( λ ) = − λ 3 + 4 λ K 2 = − 1 K_{2} = -1 K 2 = − 1 K 3 = − 9 4 K_{3} = - \frac{9}{4} K 3 = − 4 9 Como
I 3 = 0 ∧ I 2 ≠ 0 ∧ I 4 ≠ 0 I_{3} = 0 \wedge I_{2} \neq 0 \wedge I_{4} \neq 0 I 3 = 0 ∧ I 2 = 0 ∧ I 4 = 0 entonces por razón de tipos de rectas:
hay que
Formulamos la ecuación característica para nuestra superficie:
− I 1 λ 2 + I 2 λ − I 3 + λ 3 = 0 - I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0 − I 1 λ 2 + I 2 λ − I 3 + λ 3 = 0 o
λ 3 − λ 4 = 0 \lambda^{3} - \frac{\lambda}{4} = 0 λ 3 − 4 λ = 0 λ 1 = − 1 2 \lambda_{1} = - \frac{1}{2} λ 1 = − 2 1 λ 2 = 1 2 \lambda_{2} = \frac{1}{2} λ 2 = 2 1 λ 3 = 0 \lambda_{3} = 0 λ 3 = 0 entonces la forma canónica de la ecuación será
a ~ 2 ( − 1 ) I 4 I 2 + ( x ~ 2 λ 1 + y ~ 2 λ 2 ) = 0 \tilde a 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0 a ~ 2 I 2 ( − 1 ) I 4 + ( x ~ 2 λ 1 + y ~ 2 λ 2 ) = 0 y
− a ~ 2 ( − 1 ) I 4 I 2 + ( x ~ 2 λ 1 + y ~ 2 λ 2 ) = 0 - \tilde a 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0 − a ~ 2 I 2 ( − 1 ) I 4 + ( x ~ 2 λ 1 + y ~ 2 λ 2 ) = 0 2 a ~ − x ~ 2 2 + y ~ 2 2 = 0 2 \tilde a - \frac{\tilde x^{2}}{2} + \frac{\tilde y^{2}}{2} = 0 2 a ~ − 2 x ~ 2 + 2 y ~ 2 = 0 y
− 2 a ~ − x ~ 2 2 + y ~ 2 2 = 0 - 2 \tilde a - \frac{\tilde x^{2}}{2} + \frac{\tilde y^{2}}{2} = 0 − 2 a ~ − 2 x ~ 2 + 2 y ~ 2 = 0 − 2 a ~ + ( x ~ 2 2 − y ~ 2 2 ) = 0 - 2 \tilde a + \left(\frac{\tilde x^{2}}{2} - \frac{\tilde y^{2}}{2}\right) = 0 − 2 a ~ + ( 2 x ~ 2 − 2 y ~ 2 ) = 0 y
2 a ~ + ( x ~ 2 2 − y ~ 2 2 ) = 0 2 \tilde a + \left(\frac{\tilde x^{2}}{2} - \frac{\tilde y^{2}}{2}\right) = 0 2 a ~ + ( 2 x ~ 2 − 2 y ~ 2 ) = 0 es la ecuación para el tipo paraboloide hiperbólico
- está reducida a la forma canónica