Sr Examen

Otras calculadoras

z^2-2sqrt(2)xz-2sqrt(6)x-2sqrt(3)z-1+(y+1)^2=0 forma canónica

El profesor se sorprenderá mucho al ver tu solución correcta😉

v

Gráfico:

x: [, ]
y: [, ]
z: [, ]

Calidad:

 (Cantidad de puntos en el eje)

Tipo de trazado:

Solución

Ha introducido [src]
      2          2         ___         ___           ___    
-1 + z  + (1 + y)  - 2*x*\/ 6  - 2*z*\/ 3  - 2*x*z*\/ 2  = 0
22xz26x+z223z+(y+1)21=0- 2 \sqrt{2} x z - 2 \sqrt{6} x + z^{2} - 2 \sqrt{3} z + \left(y + 1\right)^{2} - 1 = 0
-2*sqrt(2)*x*z - 2*sqrt(6)*x + z^2 - 2*sqrt(3)*z + (y + 1)^2 - 1 = 0
Método de invariantes
Se da la ecuación de superficie de 2 grado:
22xz26x+z223z+(y+1)21=0- 2 \sqrt{2} x z - 2 \sqrt{6} x + z^{2} - 2 \sqrt{3} z + \left(y + 1\right)^{2} - 1 = 0
Esta ecuación tiene la forma:
a11x2+2a12xy+2a13xz+2a14x+a22y2+2a23yz+2a24y+a33z2+2a34z+a44=0a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x z + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} y z + 2 a_{24} y + a_{33} z^{2} + 2 a_{34} z + a_{44} = 0
donde
a11=0a_{11} = 0
a12=0a_{12} = 0
a13=2a_{13} = - \sqrt{2}
a14=6a_{14} = - \sqrt{6}
a22=1a_{22} = 1
a23=0a_{23} = 0
a24=1a_{24} = 1
a33=1a_{33} = 1
a34=3a_{34} = - \sqrt{3}
a44=0a_{44} = 0
Las invariantes de esta ecuación al transformar las coordenadas son los determinantes:
I1=a11+a22+a33I_{1} = a_{11} + a_{22} + a_{33}
     |a11  a12|   |a22  a23|   |a11  a13|
I2 = |        | + |        | + |        |
     |a12  a22|   |a23  a33|   |a13  a33|

I3=a11a12a13a12a22a23a13a23a33I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|
I4=a11a12a13a14a12a22a23a24a13a23a33a34a14a24a34a44I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|
I(λ)=a11λa12a13a12a22λa23a13a23a33λI{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|
     |a11  a14|   |a22  a24|   |a33  a34|
K2 = |        | + |        | + |        |
     |a14  a44|   |a24  a44|   |a34  a44|

     |a11  a12  a14|   |a22  a23  a24|   |a11  a13  a14|
     |             |   |             |   |             |
K3 = |a12  a22  a24| + |a23  a33  a34| + |a13  a33  a34|
     |             |   |             |   |             |
     |a14  a24  a44|   |a24  a34  a44|   |a14  a34  a44|

sustituimos coeficientes
I1=2I_{1} = 2
                       |           ___|
     |0  0|   |1  0|   |  0     -\/ 2 |
I2 = |    | + |    | + |              |
     |0  1|   |0  1|   |   ___        |
                       |-\/ 2     1   |

I3=002010201I_{3} = \left|\begin{matrix}0 & 0 & - \sqrt{2}\\0 & 1 & 0\\- \sqrt{2} & 0 & 1\end{matrix}\right|
I4=0026010120136130I_{4} = \left|\begin{matrix}0 & 0 & - \sqrt{2} & - \sqrt{6}\\0 & 1 & 0 & 1\\- \sqrt{2} & 0 & 1 & - \sqrt{3}\\- \sqrt{6} & 1 & - \sqrt{3} & 0\end{matrix}\right|
I(λ)=λ0201λ0201λI{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & 0 & - \sqrt{2}\\0 & 1 - \lambda & 0\\- \sqrt{2} & 0 & 1 - \lambda\end{matrix}\right|
     |           ___|            |           ___|
     |  0     -\/ 6 |   |1  1|   |  1     -\/ 3 |
K2 = |              | + |    | + |              |
     |   ___        |   |1  0|   |   ___        |
     |-\/ 6     0   |            |-\/ 3     0   |

                                                 |           ___     ___|
     |              ___|   |1    0       1   |   |  0     -\/ 2   -\/ 6 |
     |  0     0  -\/ 6 |   |                 |   |                      |
     |                 |   |              ___|   |   ___             ___|
K3 = |  0     1    1   | + |0    1     -\/ 3 | + |-\/ 2     1     -\/ 3 |
     |                 |   |                 |   |                      |
     |   ___           |   |      ___        |   |   ___     ___        |
     |-\/ 6   1    0   |   |1  -\/ 3     0   |   |-\/ 6   -\/ 3     0   |
                                                 

I1=2I_{1} = 2
I2=1I_{2} = -1
I3=2I_{3} = -2
I4=16I_{4} = -16
I(λ)=λ3+2λ2+λ2I{\left(\lambda \right)} = - \lambda^{3} + 2 \lambda^{2} + \lambda - 2
K2=10K_{2} = -10
K3=28K_{3} = -28
Como
I3 != 0

entonces por razón de tipos de rectas:
hay que
Formulamos la ecuación característica para nuestra superficie:
I1λ2+I2λI3+λ3=0- I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0
o
λ32λ2λ+2=0\lambda^{3} - 2 \lambda^{2} - \lambda + 2 = 0
λ1=2\lambda_{1} = 2
λ2=1\lambda_{2} = 1
λ3=1\lambda_{3} = -1
entonces la forma canónica de la ecuación será
(z~2λ3+(x~2λ1+y~2λ2))+I4I3=0\left(\tilde z^{2} \lambda_{3} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right)\right) + \frac{I_{4}}{I_{3}} = 0
2x~2+y~2z~2+8=02 \tilde x^{2} + \tilde y^{2} - \tilde z^{2} + 8 = 0
z~2(1142)2+(x~2(122142)2+y~2(1142)2)=1- \frac{\tilde z^{2}}{\left(\frac{1}{\frac{1}{4} \sqrt{2}}\right)^{2}} + \left(\frac{\tilde x^{2}}{\left(\frac{\frac{1}{2} \sqrt{2}}{\frac{1}{4} \sqrt{2}}\right)^{2}} + \frac{\tilde y^{2}}{\left(\frac{1}{\frac{1}{4} \sqrt{2}}\right)^{2}}\right) = -1
es la ecuación para el tipo hiperboloide bilateral
- está reducida a la forma canónica