Sr Examen

Otras calculadoras

x^2-10*x*y+7*y^2+2*x-10*y=a forma canónica

El profesor se sorprenderá mucho al ver tu solución correcta😉

v

Gráfico:

x: [, ]
y: [, ]
z: [, ]

Calidad:

 (Cantidad de puntos en el eje)

Tipo de trazado:

Solución

Ha introducido [src]
 2                       2             
x  - a - 10*y + 2*x + 7*y  - 10*x*y = 0
a+x210xy+2x+7y210y=0- a + x^{2} - 10 x y + 2 x + 7 y^{2} - 10 y = 0
-a + x^2 - 10*x*y + 2*x + 7*y^2 - 10*y = 0
Método de invariantes
Se da la ecuación de superficie de 2 grado:
a+x210xy+2x+7y210y=0- a + x^{2} - 10 x y + 2 x + 7 y^{2} - 10 y = 0
Esta ecuación tiene la forma:
a2a33+2aa13x+2aa23y+2aa34+a11x2+2a12xy+2a14x+a22y2+2a24y+a44=0a^{2} a_{33} + 2 a a_{13} x + 2 a a_{23} y + 2 a a_{34} + a_{11} x^{2} + 2 a_{12} x y + 2 a_{14} x + a_{22} y^{2} + 2 a_{24} y + a_{44} = 0
donde
a11=1a_{11} = 1
a12=5a_{12} = -5
a13=0a_{13} = 0
a14=1a_{14} = 1
a22=7a_{22} = 7
a23=0a_{23} = 0
a24=5a_{24} = -5
a33=0a_{33} = 0
a34=12a_{34} = - \frac{1}{2}
a44=0a_{44} = 0
Las invariantes de esta ecuación al transformar las coordenadas son los determinantes:
I1=a11+a22+a33I_{1} = a_{11} + a_{22} + a_{33}
     |a11  a12|   |a22  a23|   |a11  a13|
I2 = |        | + |        | + |        |
     |a12  a22|   |a23  a33|   |a13  a33|

I3=a11a12a13a12a22a23a13a23a33I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|
I4=a11a12a13a14a12a22a23a24a13a23a33a34a14a24a34a44I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|
I(λ)=a11λa12a13a12a22λa23a13a23a33λI{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|
     |a11  a14|   |a22  a24|   |a33  a34|
K2 = |        | + |        | + |        |
     |a14  a44|   |a24  a44|   |a34  a44|

     |a11  a12  a14|   |a22  a23  a24|   |a11  a13  a14|
     |             |   |             |   |             |
K3 = |a12  a22  a24| + |a23  a33  a34| + |a13  a33  a34|
     |             |   |             |   |             |
     |a14  a24  a44|   |a24  a34  a44|   |a14  a34  a44|

sustituimos coeficientes
I1=8I_{1} = 8
     |1   -5|   |7  0|   |1  0|
I2 = |      | + |    | + |    |
     |-5  7 |   |0  0|   |0  0|

I3=150570000I_{3} = \left|\begin{matrix}1 & -5 & 0\\-5 & 7 & 0\\0 & 0 & 0\end{matrix}\right|
I4=150157050001215120I_{4} = \left|\begin{matrix}1 & -5 & 0 & 1\\-5 & 7 & 0 & -5\\0 & 0 & 0 & - \frac{1}{2}\\1 & -5 & - \frac{1}{2} & 0\end{matrix}\right|
I(λ)=1λ5057λ000λI{\left(\lambda \right)} = \left|\begin{matrix}1 - \lambda & -5 & 0\\-5 & 7 - \lambda & 0\\0 & 0 & - \lambda\end{matrix}\right|
     |1  1|   |7   -5|   | 0    -1/2|
K2 = |    | + |      | + |          |
     |1  0|   |-5  0 |   |-1/2   0  |

     |1   -5  1 |   |7    0     -5 |   |1   0     1  |
     |          |   |              |   |             |
K3 = |-5  7   -5| + |0    0    -1/2| + |0   0    -1/2|
     |          |   |              |   |             |
     |1   -5  0 |   |-5  -1/2   0  |   |1  -1/2   0  |

I1=8I_{1} = 8
I2=18I_{2} = -18
I3=0I_{3} = 0
I4=92I_{4} = \frac{9}{2}
I(λ)=λ3+8λ2+18λI{\left(\lambda \right)} = - \lambda^{3} + 8 \lambda^{2} + 18 \lambda
K2=1054K_{2} = - \frac{105}{4}
K3=16K_{3} = 16
Como
I3=0I20I40I_{3} = 0 \wedge I_{2} \neq 0 \wedge I_{4} \neq 0
entonces por razón de tipos de rectas:
hay que
Formulamos la ecuación característica para nuestra superficie:
I1λ2+I2λI3+λ3=0- I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0
o
λ38λ218λ=0\lambda^{3} - 8 \lambda^{2} - 18 \lambda = 0
λ1=434\lambda_{1} = 4 - \sqrt{34}
λ2=4+34\lambda_{2} = 4 + \sqrt{34}
λ3=0\lambda_{3} = 0
entonces la forma canónica de la ecuación será
a~2(1)I4I2+(x~2λ1+y~2λ2)=0\tilde a 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0
y
a~2(1)I4I2+(x~2λ1+y~2λ2)=0- \tilde a 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0
a~+x~2(434)+y~2(4+34)=0\tilde a + \tilde x^{2} \left(4 - \sqrt{34}\right) + \tilde y^{2} \left(4 + \sqrt{34}\right) = 0
y
a~+x~2(434)+y~2(4+34)=0- \tilde a + \tilde x^{2} \left(4 - \sqrt{34}\right) + \tilde y^{2} \left(4 + \sqrt{34}\right) = 0
2a~+(x~21214+34y~21214+34)=0- 2 \tilde a + \left(\frac{\tilde x^{2}}{\frac{1}{2} \frac{1}{-4 + \sqrt{34}}} - \frac{\tilde y^{2}}{\frac{1}{2} \frac{1}{4 + \sqrt{34}}}\right) = 0
y
2a~+(x~21214+34y~21214+34)=02 \tilde a + \left(\frac{\tilde x^{2}}{\frac{1}{2} \frac{1}{-4 + \sqrt{34}}} - \frac{\tilde y^{2}}{\frac{1}{2} \frac{1}{4 + \sqrt{34}}}\right) = 0
es la ecuación para el tipo paraboloide hiperbólico
- está reducida a la forma canónica