Sr Examen

Otras calculadoras

x1^2+x2^2 forma canónica

El profesor se sorprenderá mucho al ver tu solución correcta😉

v

Gráfico:

x: [, ]
y: [, ]
z: [, ]

Calidad:

 (Cantidad de puntos en el eje)

Tipo de trazado:

Solución

Ha introducido [src]
  2     2    
x1  + x2  = 0
$$x_{1}^{2} + x_{2}^{2} = 0$$
x1^2 + x2^2 = 0
Solución detallada
Se da la ecuación de la línea de 2-o orden:
$$x_{1}^{2} + x_{2}^{2} = 0$$
Esta ecuación tiene la forma:
$$a_{11} x_{2}^{2} + 2 a_{12} x_{1} x_{2} + 2 a_{13} x_{2} + a_{22} x_{1}^{2} + 2 a_{23} x_{1} + a_{33} = 0$$
donde
$$a_{11} = 1$$
$$a_{12} = 0$$
$$a_{13} = 0$$
$$a_{22} = 1$$
$$a_{23} = 0$$
$$a_{33} = 0$$
Calculemos el determinante
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
o, sustituimos
$$\Delta = \left|\begin{matrix}1 & 0\\0 & 1\end{matrix}\right|$$
$$\Delta = 1$$
Como
$$\Delta$$
no es igual a 0, entonces
hallamos el centro de coordenadas canónicas. Para eso resolvemos el sistema de ecuaciones
$$a_{11} x_{20} + a_{12} x_{10} + a_{13} = 0$$
$$a_{12} x_{20} + a_{22} x_{10} + a_{23} = 0$$
sustituimos coeficientes
$$x_{20} = 0$$
$$x_{10} = 0$$
entonces
$$x_{20} = 0$$
$$x_{10} = 0$$
Así pasamos a la ecuación en el sistema de coordenadas O'x'y'
$$a'_{33} + a_{11} x2'^{2} + 2 a_{12} x1' x2' + a_{22} x1'^{2} = 0$$
donde
$$a'_{33} = a_{13} x_{20} + a_{23} x_{10} + a_{33}$$
o
$$a'_{33} = 0$$
$$a'_{33} = 0$$
entonces la ecuación se transformará en
$$x1'^{2} + x2'^{2} = 0$$
Esta ecuación es una elipsis degenerada
$$\frac{\tilde x1^{2}}{1^{2}} + \frac{\tilde x2^{2}}{1^{2}} = 0$$
- está reducida a la forma canónica
Centro de las coordenadas canónicas en el punto O
(0, 0)

Base de las coordenadas canónicas
$$\vec e_1 = \left( 1, \ 0\right)$$
$$\vec e_2 = \left( 0, \ 1\right)$$
Método de invariantes
Se da la ecuación de la línea de 2-o orden:
$$x_{1}^{2} + x_{2}^{2} = 0$$
Esta ecuación tiene la forma:
$$a_{11} x_{2}^{2} + 2 a_{12} x_{1} x_{2} + 2 a_{13} x_{2} + a_{22} x_{1}^{2} + 2 a_{23} x_{1} + a_{33} = 0$$
donde
$$a_{11} = 1$$
$$a_{12} = 0$$
$$a_{13} = 0$$
$$a_{22} = 1$$
$$a_{23} = 0$$
$$a_{33} = 0$$
Las invariantes de esta ecuación al transformar las coordenadas son los determinantes:
$$I_{1} = a_{11} + a_{22}$$
     |a11  a12|
I2 = |        |
     |a12  a22|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|$$
     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

sustituimos coeficientes
$$I_{1} = 2$$
     |1  0|
I2 = |    |
     |0  1|

$$I_{3} = \left|\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 0\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}1 - \lambda & 0\\0 & 1 - \lambda\end{matrix}\right|$$
     |1  0|   |1  0|
K2 = |    | + |    |
     |0  0|   |0  0|

$$I_{1} = 2$$
$$I_{2} = 1$$
$$I_{3} = 0$$
$$I{\left(\lambda \right)} = \lambda^{2} - 2 \lambda + 1$$
$$K_{2} = 0$$
Como
$$I_{3} = 0 \wedge I_{2} > 0$$
entonces por razón de tipos de rectas:
esta ecuación tiene el tipo : elipsis degenerada
Formulamos la ecuación característica para nuestra línea:
$$- I_{1} \lambda + I_{2} + \lambda^{2} = 0$$
o
$$\lambda^{2} - 2 \lambda + 1 = 0$$
$$\lambda_{1} = 1$$
$$\lambda_{2} = 1$$
entonces la forma canónica de la ecuación será
$$\tilde x1^{2} \lambda_{2} + \tilde x2^{2} \lambda_{1} + \frac{I_{3}}{I_{2}} = 0$$
o
$$\tilde x1^{2} + \tilde x2^{2} = 0$$
$$\frac{\tilde x1^{2}}{1^{2}} + \frac{\tilde x2^{2}}{1^{2}} = 0$$
- está reducida a la forma canónica