Sr Examen

Otras calculadoras

x^2+5y^2+z^2+2xy+6xz+2yz+6sqrt(6)x+12sqrt(12)y+6sqrt(6)z=0 forma canónica

El profesor se sorprenderá mucho al ver tu solución correcta😉

v

Gráfico:

x: [, ]
y: [, ]
z: [, ]

Calidad:

 (Cantidad de puntos en el eje)

Tipo de trazado:

Solución

Ha introducido [src]
 2    2      2                                 ___         ___          ___    
x  + z  + 5*y  + 2*x*y + 2*y*z + 6*x*z + 6*x*\/ 6  + 6*z*\/ 6  + 24*y*\/ 3  = 0
x2+2xy+6xz+66x+5y2+2yz+243y+z2+66z=0x^{2} + 2 x y + 6 x z + 6 \sqrt{6} x + 5 y^{2} + 2 y z + 24 \sqrt{3} y + z^{2} + 6 \sqrt{6} z = 0
x^2 + 2*x*y + 6*x*z + 6*sqrt(6)*x + 5*y^2 + 2*y*z + 24*sqrt(3)*y + z^2 + 6*sqrt(6)*z = 0
Método de invariantes
Se da la ecuación de superficie de 2 grado:
x2+2xy+6xz+66x+5y2+2yz+243y+z2+66z=0x^{2} + 2 x y + 6 x z + 6 \sqrt{6} x + 5 y^{2} + 2 y z + 24 \sqrt{3} y + z^{2} + 6 \sqrt{6} z = 0
Esta ecuación tiene la forma:
a11x2+2a12xy+2a13xz+2a14x+a22y2+2a23yz+2a24y+a33z2+2a34z+a44=0a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x z + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} y z + 2 a_{24} y + a_{33} z^{2} + 2 a_{34} z + a_{44} = 0
donde
a11=1a_{11} = 1
a12=1a_{12} = 1
a13=3a_{13} = 3
a14=36a_{14} = 3 \sqrt{6}
a22=5a_{22} = 5
a23=1a_{23} = 1
a24=123a_{24} = 12 \sqrt{3}
a33=1a_{33} = 1
a34=36a_{34} = 3 \sqrt{6}
a44=0a_{44} = 0
Las invariantes de esta ecuación al transformar las coordenadas son los determinantes:
I1=a11+a22+a33I_{1} = a_{11} + a_{22} + a_{33}
     |a11  a12|   |a22  a23|   |a11  a13|
I2 = |        | + |        | + |        |
     |a12  a22|   |a23  a33|   |a13  a33|

I3=a11a12a13a12a22a23a13a23a33I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|
I4=a11a12a13a14a12a22a23a24a13a23a33a34a14a24a34a44I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|
I(λ)=a11λa12a13a12a22λa23a13a23a33λI{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|
     |a11  a14|   |a22  a24|   |a33  a34|
K2 = |        | + |        | + |        |
     |a14  a44|   |a24  a44|   |a34  a44|

     |a11  a12  a14|   |a22  a23  a24|   |a11  a13  a14|
     |             |   |             |   |             |
K3 = |a12  a22  a24| + |a23  a33  a34| + |a13  a33  a34|
     |             |   |             |   |             |
     |a14  a24  a44|   |a24  a34  a44|   |a14  a34  a44|

sustituimos coeficientes
I1=7I_{1} = 7
     |1  1|   |5  1|   |1  3|
I2 = |    | + |    | + |    |
     |1  5|   |1  1|   |3  1|

I3=113151311I_{3} = \left|\begin{matrix}1 & 1 & 3\\1 & 5 & 1\\3 & 1 & 1\end{matrix}\right|
I4=113361511233113636123360I_{4} = \left|\begin{matrix}1 & 1 & 3 & 3 \sqrt{6}\\1 & 5 & 1 & 12 \sqrt{3}\\3 & 1 & 1 & 3 \sqrt{6}\\3 \sqrt{6} & 12 \sqrt{3} & 3 \sqrt{6} & 0\end{matrix}\right|
I(λ)=1λ1315λ1311λI{\left(\lambda \right)} = \left|\begin{matrix}1 - \lambda & 1 & 3\\1 & 5 - \lambda & 1\\3 & 1 & 1 - \lambda\end{matrix}\right|
     |             ___|   |               ___|   |             ___|
     |   1     3*\/ 6 |   |   5      12*\/ 3 |   |   1     3*\/ 6 |
K2 = |                | + |                  | + |                |
     |    ___         |   |     ___          |   |    ___         |
     |3*\/ 6      0   |   |12*\/ 3      0    |   |3*\/ 6      0   |

     |                       ___ |   |                        ___|   |                      ___|
     |   1        1      3*\/ 6  |   |   5         1     12*\/ 3 |   |   1        3     3*\/ 6 |
     |                           |   |                           |   |                         |
     |                        ___|   |                       ___ |   |                      ___|
K3 = |   1        5      12*\/ 3 | + |   1         1     3*\/ 6  | + |   3        1     3*\/ 6 |
     |                           |   |                           |   |                         |
     |    ___       ___          |   |     ___      ___          |   |    ___      ___         |
     |3*\/ 6   12*\/ 3      0    |   |12*\/ 3   3*\/ 6      0    |   |3*\/ 6   3*\/ 6      0   |
           

I1=7I_{1} = 7
I2=0I_{2} = 0
I3=36I_{3} = -36
I4=45368642I_{4} = 4536 - 864 \sqrt{2}
I(λ)=λ3+7λ236I{\left(\lambda \right)} = - \lambda^{3} + 7 \lambda^{2} - 36
K2=540K_{2} = -540
K3=1188+4322K_{3} = -1188 + 432 \sqrt{2}
Como
I3 != 0

entonces por razón de tipos de rectas:
hay que
Formulamos la ecuación característica para nuestra superficie:
I1λ2+I2λI3+λ3=0- I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0
o
λ37λ2+36=0\lambda^{3} - 7 \lambda^{2} + 36 = 0
λ1=6\lambda_{1} = 6
λ2=3\lambda_{2} = 3
λ3=2\lambda_{3} = -2
entonces la forma canónica de la ecuación será
(z~2λ3+(x~2λ1+y~2λ2))+I4I3=0\left(\tilde z^{2} \lambda_{3} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right)\right) + \frac{I_{4}}{I_{3}} = 0
6x~2+3y~22z~2126+242=06 \tilde x^{2} + 3 \tilde y^{2} - 2 \tilde z^{2} - 126 + 24 \sqrt{2} = 0
z~2(1221126242)2+(x~2(1661126242)2+y~2(1331126242)2)=1- \frac{\tilde z^{2}}{\left(\frac{\frac{1}{2} \sqrt{2}}{\frac{1}{\sqrt{126 - 24 \sqrt{2}}}}\right)^{2}} + \left(\frac{\tilde x^{2}}{\left(\frac{\frac{1}{6} \sqrt{6}}{\frac{1}{\sqrt{126 - 24 \sqrt{2}}}}\right)^{2}} + \frac{\tilde y^{2}}{\left(\frac{\frac{1}{3} \sqrt{3}}{\frac{1}{\sqrt{126 - 24 \sqrt{2}}}}\right)^{2}}\right) = 1
es la ecuación para el tipo hiperboloide unilateral
- está reducida a la forma canónica