Se da la ecuación de la línea de 2-o orden:
$$3 x^{2} + 4 \sqrt{5} x y + 4 y^{2} = 0$$
Esta ecuación tiene la forma:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
donde
$$a_{11} = 3$$
$$a_{12} = 2 \sqrt{5}$$
$$a_{13} = 0$$
$$a_{22} = 4$$
$$a_{23} = 0$$
$$a_{33} = 0$$
Calculemos el determinante
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
o, sustituimos
$$\Delta = \left|\begin{matrix}3 & 2 \sqrt{5}\\2 \sqrt{5} & 4\end{matrix}\right|$$
$$\Delta = -8$$
Como
$$\Delta$$
no es igual a 0, entonces
hallamos el centro de coordenadas canónicas. Para eso resolvemos el sistema de ecuaciones
$$a_{11} x_{0} + a_{12} y_{0} + a_{13} = 0$$
$$a_{12} x_{0} + a_{22} y_{0} + a_{23} = 0$$
sustituimos coeficientes
$$3 x_{0} + 2 \sqrt{5} y_{0} = 0$$
$$2 \sqrt{5} x_{0} + 4 y_{0} = 0$$
entonces
$$x_{0} = 0$$
$$y_{0} = 0$$
Así pasamos a la ecuación en el sistema de coordenadas O'x'y'
$$a'_{33} + a_{11} x'^{2} + 2 a_{12} x' y' + a_{22} y'^{2} = 0$$
donde
$$a'_{33} = a_{13} x_{0} + a_{23} y_{0} + a_{33}$$
o
$$a'_{33} = 0$$
$$a'_{33} = 0$$
entonces la ecuación se transformará en
$$3 x'^{2} + 4 \sqrt{5} x' y' + 4 y'^{2} = 0$$
Hacemos el giro del sistema de coordenadas obtenido al ángulo de φ
$$x' = \tilde x \cos{\left(\phi \right)} - \tilde y \sin{\left(\phi \right)}$$
$$y' = \tilde x \sin{\left(\phi \right)} + \tilde y \cos{\left(\phi \right)}$$
φ - se define de la fórmula
$$\cot{\left(2 \phi \right)} = \frac{a_{11} - a_{22}}{2 a_{12}}$$
sustituimos coeficientes
$$\cot{\left(2 \phi \right)} = - \frac{\sqrt{5}}{20}$$
entonces
$$\phi = - \frac{\operatorname{acot}{\left(\frac{\sqrt{5}}{20} \right)}}{2}$$
$$\sin{\left(2 \phi \right)} = - \frac{4 \sqrt{5}}{9}$$
$$\cos{\left(2 \phi \right)} = \frac{1}{9}$$
$$\cos{\left(\phi \right)} = \sqrt{\frac{\cos{\left(2 \phi \right)}}{2} + \frac{1}{2}}$$
$$\sin{\left(\phi \right)} = \sqrt{1 - \cos^{2}{\left(\phi \right)}}$$
$$\cos{\left(\phi \right)} = \frac{\sqrt{5}}{3}$$
$$\sin{\left(\phi \right)} = - \frac{2}{3}$$
sustituimos coeficientes
$$x' = \frac{\sqrt{5} \tilde x}{3} + \frac{2 \tilde y}{3}$$
$$y' = - \frac{2 \tilde x}{3} + \frac{\sqrt{5} \tilde y}{3}$$
entonces la ecuación se transformará de
$$3 x'^{2} + 4 \sqrt{5} x' y' + 4 y'^{2} = 0$$
en
$$4 \left(- \frac{2 \tilde x}{3} + \frac{\sqrt{5} \tilde y}{3}\right)^{2} + 4 \sqrt{5} \left(- \frac{2 \tilde x}{3} + \frac{\sqrt{5} \tilde y}{3}\right) \left(\frac{\sqrt{5} \tilde x}{3} + \frac{2 \tilde y}{3}\right) + 3 \left(\frac{\sqrt{5} \tilde x}{3} + \frac{2 \tilde y}{3}\right)^{2} = 0$$
simplificamos
$$- \tilde x^{2} + 8 \tilde y^{2} = 0$$
$$\tilde x^{2} - 8 \tilde y^{2} = 0$$
Esta ecuación es una hipérbola degenerada
$$\frac{\tilde x^{2}}{1^{2}} - \frac{\tilde y^{2}}{\left(\frac{\sqrt{2}}{4}\right)^{2}} = 0$$
- está reducida a la forma canónica
Centro de las coordenadas canónicas en el punto O
(0, 0)
Base de las coordenadas canónicas
$$\vec e_1 = \left( \frac{\sqrt{5}}{3}, \ - \frac{2}{3}\right)$$
$$\vec e_2 = \left( \frac{2}{3}, \ \frac{\sqrt{5}}{3}\right)$$