Sr Examen

Otras calculadoras

y^2+8*z^2=64 forma canónica

El profesor se sorprenderá mucho al ver tu solución correcta😉

v

Gráfico:

x: [, ]
y: [, ]
z: [, ]

Calidad:

 (Cantidad de puntos en el eje)

Tipo de trazado:

Solución

Ha introducido [src]
       2      2    
-64 + y  + 8*z  = 0
$$y^{2} + 8 z^{2} - 64 = 0$$
y^2 + 8*z^2 - 64 = 0
Método de invariantes
Se da la ecuación de superficie de 2 grado:
$$y^{2} + 8 z^{2} - 64 = 0$$
Esta ecuación tiene la forma:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x z + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} y z + 2 a_{24} y + a_{33} z^{2} + 2 a_{34} z + a_{44} = 0$$
donde
$$a_{11} = 0$$
$$a_{12} = 0$$
$$a_{13} = 0$$
$$a_{14} = 0$$
$$a_{22} = 1$$
$$a_{23} = 0$$
$$a_{24} = 0$$
$$a_{33} = 8$$
$$a_{34} = 0$$
$$a_{44} = -64$$
Las invariantes de esta ecuación al transformar las coordenadas son los determinantes:
$$I_{1} = a_{11} + a_{22} + a_{33}$$
     |a11  a12|   |a22  a23|   |a11  a13|
I2 = |        | + |        | + |        |
     |a12  a22|   |a23  a33|   |a13  a33|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|$$
     |a11  a14|   |a22  a24|   |a33  a34|
K2 = |        | + |        | + |        |
     |a14  a44|   |a24  a44|   |a34  a44|

     |a11  a12  a14|   |a22  a23  a24|   |a11  a13  a14|
     |             |   |             |   |             |
K3 = |a12  a22  a24| + |a23  a33  a34| + |a13  a33  a34|
     |             |   |             |   |             |
     |a14  a24  a44|   |a24  a34  a44|   |a14  a34  a44|

sustituimos coeficientes
$$I_{1} = 9$$
     |0  0|   |1  0|   |0  0|
I2 = |    | + |    | + |    |
     |0  1|   |0  8|   |0  8|

$$I_{3} = \left|\begin{matrix}0 & 0 & 0\\0 & 1 & 0\\0 & 0 & 8\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}0 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 8 & 0\\0 & 0 & 0 & -64\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & 0 & 0\\0 & 1 - \lambda & 0\\0 & 0 & 8 - \lambda\end{matrix}\right|$$
     |0   0 |   |1   0 |   |8   0 |
K2 = |      | + |      | + |      |
     |0  -64|   |0  -64|   |0  -64|

     |0  0   0 |   |1  0   0 |   |0  0   0 |
     |         |   |         |   |         |
K3 = |0  1   0 | + |0  8   0 | + |0  8   0 |
     |         |   |         |   |         |
     |0  0  -64|   |0  0  -64|   |0  0  -64|

$$I_{1} = 9$$
$$I_{2} = 8$$
$$I_{3} = 0$$
$$I_{4} = 0$$
$$I{\left(\lambda \right)} = - \lambda^{3} + 9 \lambda^{2} - 8 \lambda$$
$$K_{2} = -576$$
$$K_{3} = -512$$
Como
$$I_{3} = 0 \wedge I_{4} = 0 \wedge I_{2} \neq 0$$
entonces por razón de tipos de rectas:
hay que
Formulamos la ecuación característica para nuestra superficie:
$$- I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0$$
o
$$\lambda^{3} - 9 \lambda^{2} + 8 \lambda = 0$$
$$\lambda_{1} = 8$$
$$\lambda_{2} = 1$$
$$\lambda_{3} = 0$$
entonces la forma canónica de la ecuación será
$$\left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) + \frac{K_{3}}{I_{2}} = 0$$
$$8 \tilde x^{2} + \tilde y^{2} - 64 = 0$$
        2            2    
\tilde x     \tilde y     
---------- + --------- = 1
         2         2      
//  ___\\      / 1\       
||\/ 2 ||      \8 /       
||-----||                 
|\  4  /|                 
|-------|                 
\  1/8  /                 

es la ecuación para el tipo cilindro elíptico
- está reducida a la forma canónica