Se da la ecuación de superficie de 2 grado:
3 6 x + 3 y 2 − 2 3 y + 4 z 2 + 13 = 0 3 \sqrt{6} x + 3 y^{2} - 2 \sqrt{3} y + 4 z^{2} + 13 = 0 3 6 x + 3 y 2 − 2 3 y + 4 z 2 + 13 = 0 Esta ecuación tiene la forma:
a 11 x 2 + 2 a 12 x y + 2 a 13 x z + 2 a 14 x + a 22 y 2 + 2 a 23 y z + 2 a 24 y + a 33 z 2 + 2 a 34 z + a 44 = 0 a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x z + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} y z + 2 a_{24} y + a_{33} z^{2} + 2 a_{34} z + a_{44} = 0 a 11 x 2 + 2 a 12 x y + 2 a 13 x z + 2 a 14 x + a 22 y 2 + 2 a 23 yz + 2 a 24 y + a 33 z 2 + 2 a 34 z + a 44 = 0 donde
a 11 = 0 a_{11} = 0 a 11 = 0 a 12 = 0 a_{12} = 0 a 12 = 0 a 13 = 0 a_{13} = 0 a 13 = 0 a 14 = 3 6 2 a_{14} = \frac{3 \sqrt{6}}{2} a 14 = 2 3 6 a 22 = 3 a_{22} = 3 a 22 = 3 a 23 = 0 a_{23} = 0 a 23 = 0 a 24 = − 3 a_{24} = - \sqrt{3} a 24 = − 3 a 33 = 4 a_{33} = 4 a 33 = 4 a 34 = 0 a_{34} = 0 a 34 = 0 a 44 = 13 a_{44} = 13 a 44 = 13 Las invariantes de esta ecuación al transformar las coordenadas son los determinantes:
I 1 = a 11 + a 22 + a 33 I_{1} = a_{11} + a_{22} + a_{33} I 1 = a 11 + a 22 + a 33 |a11 a12| |a22 a23| |a11 a13|
I2 = | | + | | + | |
|a12 a22| |a23 a33| |a13 a33| I 3 = ∣ a 11 a 12 a 13 a 12 a 22 a 23 a 13 a 23 a 33 ∣ I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right| I 3 = a 11 a 12 a 13 a 12 a 22 a 23 a 13 a 23 a 33 I 4 = ∣ a 11 a 12 a 13 a 14 a 12 a 22 a 23 a 24 a 13 a 23 a 33 a 34 a 14 a 24 a 34 a 44 ∣ I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right| I 4 = a 11 a 12 a 13 a 14 a 12 a 22 a 23 a 24 a 13 a 23 a 33 a 34 a 14 a 24 a 34 a 44 I ( λ ) = ∣ a 11 − λ a 12 a 13 a 12 a 22 − λ a 23 a 13 a 23 a 33 − λ ∣ I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right| I ( λ ) = a 11 − λ a 12 a 13 a 12 a 22 − λ a 23 a 13 a 23 a 33 − λ |a11 a14| |a22 a24| |a33 a34|
K2 = | | + | | + | |
|a14 a44| |a24 a44| |a34 a44| |a11 a12 a14| |a22 a23 a24| |a11 a13 a14|
| | | | | |
K3 = |a12 a22 a24| + |a23 a33 a34| + |a13 a33 a34|
| | | | | |
|a14 a24 a44| |a24 a34 a44| |a14 a34 a44| sustituimos coeficientes
I 1 = 7 I_{1} = 7 I 1 = 7 |0 0| |3 0| |0 0|
I2 = | | + | | + | |
|0 3| |0 4| |0 4| I 3 = ∣ 0 0 0 0 3 0 0 0 4 ∣ I_{3} = \left|\begin{matrix}0 & 0 & 0\\0 & 3 & 0\\0 & 0 & 4\end{matrix}\right| I 3 = 0 0 0 0 3 0 0 0 4 I 4 = ∣ 0 0 0 3 6 2 0 3 0 − 3 0 0 4 0 3 6 2 − 3 0 13 ∣ I_{4} = \left|\begin{matrix}0 & 0 & 0 & \frac{3 \sqrt{6}}{2}\\0 & 3 & 0 & - \sqrt{3}\\0 & 0 & 4 & 0\\\frac{3 \sqrt{6}}{2} & - \sqrt{3} & 0 & 13\end{matrix}\right| I 4 = 0 0 0 2 3 6 0 3 0 − 3 0 0 4 0 2 3 6 − 3 0 13 I ( λ ) = ∣ − λ 0 0 0 3 − λ 0 0 0 4 − λ ∣ I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & 0 & 0\\0 & 3 - \lambda & 0\\0 & 0 & 4 - \lambda\end{matrix}\right| I ( λ ) = − λ 0 0 0 3 − λ 0 0 0 4 − λ | ___|
| 3*\/ 6 |
| 0 -------| | ___|
| 2 | | 3 -\/ 3 | |4 0 |
K2 = | | + | | + | |
| ___ | | ___ | |0 13|
|3*\/ 6 | |-\/ 3 13 |
|------- 13 |
| 2 | | ___|
| 3*\/ 6 | | ___|
| 0 0 -------| | 3*\/ 6 |
| 2 | | ___| | 0 0 -------|
| | | 3 0 -\/ 3 | | 2 |
| ___ | | | | |
K3 = | 0 3 -\/ 3 | + | 0 4 0 | + | 0 4 0 |
| | | | | |
| ___ | | ___ | | ___ |
|3*\/ 6 ___ | |-\/ 3 0 13 | |3*\/ 6 |
|------- -\/ 3 13 | |------- 0 13 |
| 2 | | 2 |
I 1 = 7 I_{1} = 7 I 1 = 7 I 2 = 12 I_{2} = 12 I 2 = 12 I 3 = 0 I_{3} = 0 I 3 = 0 I 4 = − 162 I_{4} = -162 I 4 = − 162 I ( λ ) = − λ 3 + 7 λ 2 − 12 λ I{\left(\lambda \right)} = - \lambda^{3} + 7 \lambda^{2} - 12 \lambda I ( λ ) = − λ 3 + 7 λ 2 − 12 λ K 2 = 149 2 K_{2} = \frac{149}{2} K 2 = 2 149 K 3 = 99 2 K_{3} = \frac{99}{2} K 3 = 2 99 Como
I 3 = 0 ∧ I 2 ≠ 0 ∧ I 4 ≠ 0 I_{3} = 0 \wedge I_{2} \neq 0 \wedge I_{4} \neq 0 I 3 = 0 ∧ I 2 = 0 ∧ I 4 = 0 entonces por razón de tipos de rectas:
hay que
Formulamos la ecuación característica para nuestra superficie:
− I 1 λ 2 + I 2 λ − I 3 + λ 3 = 0 - I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0 − I 1 λ 2 + I 2 λ − I 3 + λ 3 = 0 o
λ 3 − 7 λ 2 + 12 λ = 0 \lambda^{3} - 7 \lambda^{2} + 12 \lambda = 0 λ 3 − 7 λ 2 + 12 λ = 0 λ 1 = 4 \lambda_{1} = 4 λ 1 = 4 λ 2 = 3 \lambda_{2} = 3 λ 2 = 3 λ 3 = 0 \lambda_{3} = 0 λ 3 = 0 entonces la forma canónica de la ecuación será
z ~ 2 ( − 1 ) I 4 I 2 + ( x ~ 2 λ 1 + y ~ 2 λ 2 ) = 0 \tilde z 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0 z ~ 2 I 2 ( − 1 ) I 4 + ( x ~ 2 λ 1 + y ~ 2 λ 2 ) = 0 y
− z ~ 2 ( − 1 ) I 4 I 2 + ( x ~ 2 λ 1 + y ~ 2 λ 2 ) = 0 - \tilde z 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0 − z ~ 2 I 2 ( − 1 ) I 4 + ( x ~ 2 λ 1 + y ~ 2 λ 2 ) = 0 4 x ~ 2 + 3 y ~ 2 + 3 6 z ~ = 0 4 \tilde x^{2} + 3 \tilde y^{2} + 3 \sqrt{6} \tilde z = 0 4 x ~ 2 + 3 y ~ 2 + 3 6 z ~ = 0 y
4 x ~ 2 + 3 y ~ 2 − 3 6 z ~ = 0 4 \tilde x^{2} + 3 \tilde y^{2} - 3 \sqrt{6} \tilde z = 0 4 x ~ 2 + 3 y ~ 2 − 3 6 z ~ = 0 2 z ~ + ( x ~ 2 3 8 6 + y ~ 2 1 2 6 ) = 0 2 \tilde z + \left(\frac{\tilde x^{2}}{\frac{3}{8} \sqrt{6}} + \frac{\tilde y^{2}}{\frac{1}{2} \sqrt{6}}\right) = 0 2 z ~ + ( 8 3 6 x ~ 2 + 2 1 6 y ~ 2 ) = 0 y
− 2 z ~ + ( x ~ 2 3 8 6 + y ~ 2 1 2 6 ) = 0 - 2 \tilde z + \left(\frac{\tilde x^{2}}{\frac{3}{8} \sqrt{6}} + \frac{\tilde y^{2}}{\frac{1}{2} \sqrt{6}}\right) = 0 − 2 z ~ + ( 8 3 6 x ~ 2 + 2 1 6 y ~ 2 ) = 0 es la ecuación para el tipo paraboloide elíptico
- está reducida a la forma canónica