Se da la ecuación de superficie de 2 grado:
3 x 2 − 5 y 2 + 2 z 2 − 6 = 0 3 x^{2} - 5 y^{2} + 2 z^{2} - 6 = 0 3 x 2 − 5 y 2 + 2 z 2 − 6 = 0 Esta ecuación tiene la forma:
a 11 x 2 + 2 a 12 x y + 2 a 13 x z + 2 a 14 x + a 22 y 2 + 2 a 23 y z + 2 a 24 y + a 33 z 2 + 2 a 34 z + a 44 = 0 a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x z + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} y z + 2 a_{24} y + a_{33} z^{2} + 2 a_{34} z + a_{44} = 0 a 11 x 2 + 2 a 12 x y + 2 a 13 x z + 2 a 14 x + a 22 y 2 + 2 a 23 yz + 2 a 24 y + a 33 z 2 + 2 a 34 z + a 44 = 0 donde
a 11 = 3 a_{11} = 3 a 11 = 3 a 12 = 0 a_{12} = 0 a 12 = 0 a 13 = 0 a_{13} = 0 a 13 = 0 a 14 = 0 a_{14} = 0 a 14 = 0 a 22 = − 5 a_{22} = -5 a 22 = − 5 a 23 = 0 a_{23} = 0 a 23 = 0 a 24 = 0 a_{24} = 0 a 24 = 0 a 33 = 2 a_{33} = 2 a 33 = 2 a 34 = 0 a_{34} = 0 a 34 = 0 a 44 = − 6 a_{44} = -6 a 44 = − 6 Las invariantes de esta ecuación al transformar las coordenadas son los determinantes:
I 1 = a 11 + a 22 + a 33 I_{1} = a_{11} + a_{22} + a_{33} I 1 = a 11 + a 22 + a 33 |a11 a12| |a22 a23| |a11 a13|
I2 = | | + | | + | |
|a12 a22| |a23 a33| |a13 a33| I 3 = ∣ a 11 a 12 a 13 a 12 a 22 a 23 a 13 a 23 a 33 ∣ I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right| I 3 = a 11 a 12 a 13 a 12 a 22 a 23 a 13 a 23 a 33 I 4 = ∣ a 11 a 12 a 13 a 14 a 12 a 22 a 23 a 24 a 13 a 23 a 33 a 34 a 14 a 24 a 34 a 44 ∣ I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right| I 4 = a 11 a 12 a 13 a 14 a 12 a 22 a 23 a 24 a 13 a 23 a 33 a 34 a 14 a 24 a 34 a 44 I ( λ ) = ∣ a 11 − λ a 12 a 13 a 12 a 22 − λ a 23 a 13 a 23 a 33 − λ ∣ I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right| I ( λ ) = a 11 − λ a 12 a 13 a 12 a 22 − λ a 23 a 13 a 23 a 33 − λ |a11 a14| |a22 a24| |a33 a34|
K2 = | | + | | + | |
|a14 a44| |a24 a44| |a34 a44| |a11 a12 a14| |a22 a23 a24| |a11 a13 a14|
| | | | | |
K3 = |a12 a22 a24| + |a23 a33 a34| + |a13 a33 a34|
| | | | | |
|a14 a24 a44| |a24 a34 a44| |a14 a34 a44| sustituimos coeficientes
I 1 = 0 I_{1} = 0 I 1 = 0 |3 0 | |-5 0| |3 0|
I2 = | | + | | + | |
|0 -5| |0 2| |0 2| I 3 = ∣ 3 0 0 0 − 5 0 0 0 2 ∣ I_{3} = \left|\begin{matrix}3 & 0 & 0\\0 & -5 & 0\\0 & 0 & 2\end{matrix}\right| I 3 = 3 0 0 0 − 5 0 0 0 2 I 4 = ∣ 3 0 0 0 0 − 5 0 0 0 0 2 0 0 0 0 − 6 ∣ I_{4} = \left|\begin{matrix}3 & 0 & 0 & 0\\0 & -5 & 0 & 0\\0 & 0 & 2 & 0\\0 & 0 & 0 & -6\end{matrix}\right| I 4 = 3 0 0 0 0 − 5 0 0 0 0 2 0 0 0 0 − 6 I ( λ ) = ∣ 3 − λ 0 0 0 − λ − 5 0 0 0 2 − λ ∣ I{\left(\lambda \right)} = \left|\begin{matrix}3 - \lambda & 0 & 0\\0 & - \lambda - 5 & 0\\0 & 0 & 2 - \lambda\end{matrix}\right| I ( λ ) = 3 − λ 0 0 0 − λ − 5 0 0 0 2 − λ |3 0 | |-5 0 | |2 0 |
K2 = | | + | | + | |
|0 -6| |0 -6| |0 -6| |3 0 0 | |-5 0 0 | |3 0 0 |
| | | | | |
K3 = |0 -5 0 | + |0 2 0 | + |0 2 0 |
| | | | | |
|0 0 -6| |0 0 -6| |0 0 -6| I 1 = 0 I_{1} = 0 I 1 = 0 I 2 = − 19 I_{2} = -19 I 2 = − 19 I 3 = − 30 I_{3} = -30 I 3 = − 30 I 4 = 180 I_{4} = 180 I 4 = 180 I ( λ ) = − λ 3 + 19 λ − 30 I{\left(\lambda \right)} = - \lambda^{3} + 19 \lambda - 30 I ( λ ) = − λ 3 + 19 λ − 30 K 2 = 0 K_{2} = 0 K 2 = 0 K 3 = 114 K_{3} = 114 K 3 = 114 Como
I3 != 0 entonces por razón de tipos de rectas:
hay que
Formulamos la ecuación característica para nuestra superficie:
− I 1 λ 2 + I 2 λ − I 3 + λ 3 = 0 - I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0 − I 1 λ 2 + I 2 λ − I 3 + λ 3 = 0 o
λ 3 − 19 λ + 30 = 0 \lambda^{3} - 19 \lambda + 30 = 0 λ 3 − 19 λ + 30 = 0 λ 1 = 3 \lambda_{1} = 3 λ 1 = 3 λ 2 = 2 \lambda_{2} = 2 λ 2 = 2 λ 3 = − 5 \lambda_{3} = -5 λ 3 = − 5 entonces la forma canónica de la ecuación será
( z ~ 2 λ 3 + ( x ~ 2 λ 1 + y ~ 2 λ 2 ) ) + I 4 I 3 = 0 \left(\tilde z^{2} \lambda_{3} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right)\right) + \frac{I_{4}}{I_{3}} = 0 ( z ~ 2 λ 3 + ( x ~ 2 λ 1 + y ~ 2 λ 2 ) ) + I 3 I 4 = 0 3 x ~ 2 + 2 y ~ 2 − 5 z ~ 2 − 6 = 0 3 \tilde x^{2} + 2 \tilde y^{2} - 5 \tilde z^{2} - 6 = 0 3 x ~ 2 + 2 y ~ 2 − 5 z ~ 2 − 6 = 0 − z ~ 2 ( 1 5 5 1 6 6 ) 2 + ( x ~ 2 ( 1 3 3 1 6 6 ) 2 + y ~ 2 ( 1 2 2 1 6 6 ) 2 ) = 1 - \frac{\tilde z^{2}}{\left(\frac{\frac{1}{5} \sqrt{5}}{\frac{1}{6} \sqrt{6}}\right)^{2}} + \left(\frac{\tilde x^{2}}{\left(\frac{\frac{1}{3} \sqrt{3}}{\frac{1}{6} \sqrt{6}}\right)^{2}} + \frac{\tilde y^{2}}{\left(\frac{\frac{1}{2} \sqrt{2}}{\frac{1}{6} \sqrt{6}}\right)^{2}}\right) = 1 − ( 6 1 6 5 1 5 ) 2 z ~ 2 + ( 6 1 6 3 1 3 ) 2 x ~ 2 + ( 6 1 6 2 1 2 ) 2 y ~ 2 = 1 es la ecuación para el tipo hiperboloide unilateral
- está reducida a la forma canónica