Sr Examen

Ecuación diferencial b*y+a*y'+y''=c*(e^x)

El profesor se sorprenderá mucho al ver tu solución correcta😉

v

Para el problema de Cauchy:

y() =
y'() =
y''() =
y'''() =
y''''() =

Gráfico:

interior superior

Solución

Ha introducido [src]
                        2             
  d                    d             x
a*--(y(x)) + b*y(x) + ---(y(x)) = c*e 
  dx                    2             
                      dx              
$$a \frac{d}{d x} y{\left(x \right)} + b y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = c e^{x}$$
a*y' + b*y + y'' = c*exp(x)
Solución detallada
Tenemos la ecuación:
$$a \frac{d}{d x} y{\left(x \right)} + b y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = c e^{x}$$
Esta ecuación diferencial tiene la forma:
y'' + p*y' + q*y = s,

donde
$$p = a$$
$$q = b$$
$$s = - c e^{x}$$
Se llama lineal heterogénea
ecuación diferencial de 2 orden con factores constantes.
No hay mucha dificultad en la resolución de esta ecuación
Primero resolvamos la ecuación lineal homogénea correspondiente
y'' + p*y' + q*y = 0

Primero hallemos las raíces de la ecuación característica
$$q + \left(k^{2} + k p\right) = 0$$
En nuestro caso la ecuación característica va a tener la forma:
$$a k + b + k^{2} = 0$$
Solución detallada de una ecuación simple
- es una ecuación cuadrática simple
Raíces de esta ecuación:
$$k_{1} = - \frac{a}{2} - \frac{\sqrt{a^{2} - 4 b}}{2}$$
$$k_{2} = - \frac{a}{2} + \frac{\sqrt{a^{2} - 4 b}}{2}$$
Como la ecuación característica tiene dos raíces,
la solución de la ecuación diferencial correspondiente tiene la forma:
$$y{\left(x \right)} = e^{k_{1} x} C_{1} + e^{k_{2} x} C_{2}$$
$$y{\left(x \right)} = C_{1} e^{x \left(- \frac{a}{2} - \frac{\sqrt{a^{2} - 4 b}}{2}\right)} + C_{2} e^{x \left(- \frac{a}{2} + \frac{\sqrt{a^{2} - 4 b}}{2}\right)}$$

Hemos encontrado la solución de la ecuación homogénea correspondiente
Ahora hay que resolver nuestra ecuación heterogénea
y'' + p*y' + q*y = s

Usamos el método de variación de la constante arbitraria
Consideremos que C1 y C2 son funciones de x

Y la solución general será:
$$y{\left(x \right)} = \operatorname{C_{1}}{\left(x \right)} e^{x \left(- \frac{a}{2} - \frac{\sqrt{a^{2} - 4 b}}{2}\right)} + \operatorname{C_{2}}{\left(x \right)} e^{x \left(- \frac{a}{2} + \frac{\sqrt{a^{2} - 4 b}}{2}\right)}$$
donde C1(x) y C2(x)
según el método de variación de constantes hallemos del sistema:
$$\operatorname{y_{1}}{\left(x \right)} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} + \operatorname{y_{2}}{\left(x \right)} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = 0$$
$$\frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} \frac{d}{d x} \operatorname{y_{1}}{\left(x \right)} + \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} \frac{d}{d x} \operatorname{y_{2}}{\left(x \right)} = f{\left(x \right)}$$
donde
y1(x) y y2(x) son soluciones parciales linealmente independientes de la ecuación diferencial lineal homogénea,
y1(x) = exp(x*(-a/2 - sqrt(a^2 - 4*b)/2)) (C1=1, C2=0),
y2(x) = exp(x*(-a/2 + sqrt(a^2 - 4*b)/2)) (C1=0, C2=1).
A es un término independiente f = - s, o
$$f{\left(x \right)} = c e^{x}$$
Es decir, el sistema tendrá la forma:
$$e^{x \left(- \frac{a}{2} - \frac{\sqrt{a^{2} - 4 b}}{2}\right)} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} + e^{x \left(- \frac{a}{2} + \frac{\sqrt{a^{2} - 4 b}}{2}\right)} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = 0$$
$$\frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} \frac{\partial}{\partial x} e^{x \left(- \frac{a}{2} - \frac{\sqrt{a^{2} - 4 b}}{2}\right)} + \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} \frac{\partial}{\partial x} e^{x \left(- \frac{a}{2} + \frac{\sqrt{a^{2} - 4 b}}{2}\right)} = c e^{x}$$
o
$$e^{x \left(- \frac{a}{2} - \frac{\sqrt{a^{2} - 4 b}}{2}\right)} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} + e^{x \left(- \frac{a}{2} + \frac{\sqrt{a^{2} - 4 b}}{2}\right)} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = 0$$
$$\left(- \frac{a}{2} - \frac{\sqrt{a^{2} - 4 b}}{2}\right) e^{x \left(- \frac{a}{2} - \frac{\sqrt{a^{2} - 4 b}}{2}\right)} \frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} + \left(- \frac{a}{2} + \frac{\sqrt{a^{2} - 4 b}}{2}\right) e^{x \left(- \frac{a}{2} + \frac{\sqrt{a^{2} - 4 b}}{2}\right)} \frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = c e^{x}$$
Resolvamos este sistema:
$$\frac{d}{d x} \operatorname{C_{1}}{\left(x \right)} = - \frac{c e^{x \left(\frac{a}{2} + \frac{\sqrt{a^{2} - 4 b}}{2} + 1\right)}}{\sqrt{a^{2} - 4 b}}$$
$$\frac{d}{d x} \operatorname{C_{2}}{\left(x \right)} = \frac{c e^{x \left(\frac{a}{2} - \frac{\sqrt{a^{2} - 4 b}}{2} + 1\right)}}{\sqrt{a^{2} - 4 b}}$$
- son ecuaciones diferenciales simples, resolvámoslas
$$\operatorname{C_{1}}{\left(x \right)} = C_{3} + \int \left(- \frac{c e^{x \left(\frac{a}{2} + \frac{\sqrt{a^{2} - 4 b}}{2} + 1\right)}}{\sqrt{a^{2} - 4 b}}\right)\, dx$$
$$\operatorname{C_{2}}{\left(x \right)} = C_{4} + \int \frac{c e^{x \left(\frac{a}{2} - \frac{\sqrt{a^{2} - 4 b}}{2} + 1\right)}}{\sqrt{a^{2} - 4 b}}\, dx$$
o
$$\operatorname{C_{1}}{\left(x \right)} = C_{3} + \begin{cases} - \frac{2 c e^{x \left(\frac{a}{2} + \frac{\sqrt{a^{2} - 4 b}}{2} + 1\right)}}{a^{2} + a \sqrt{a^{2} - 4 b} - 4 b + 2 \sqrt{a^{2} - 4 b}} & \text{for}\: a^{2} + a \sqrt{a^{2} - 4 b} - 4 b + 2 \sqrt{a^{2} - 4 b} \neq 0 \\- \frac{c x}{\sqrt{a^{2} - 4 b}} & \text{otherwise} \end{cases}$$
$$\operatorname{C_{2}}{\left(x \right)} = C_{4} + \begin{cases} \frac{2 c e^{x \left(\frac{a}{2} - \frac{\sqrt{a^{2} - 4 b}}{2} + 1\right)}}{- a^{2} + a \sqrt{a^{2} - 4 b} + 4 b + 2 \sqrt{a^{2} - 4 b}} & \text{for}\: - a^{2} + a \sqrt{a^{2} - 4 b} + 4 b + 2 \sqrt{a^{2} - 4 b} \neq 0 \\\frac{c x}{\sqrt{a^{2} - 4 b}} & \text{otherwise} \end{cases}$$
Sustituyamos C1(x) y C2(x) hallados en
$$y{\left(x \right)} = \operatorname{C_{1}}{\left(x \right)} e^{x \left(- \frac{a}{2} - \frac{\sqrt{a^{2} - 4 b}}{2}\right)} + \operatorname{C_{2}}{\left(x \right)} e^{x \left(- \frac{a}{2} + \frac{\sqrt{a^{2} - 4 b}}{2}\right)}$$
Entonces la respuesta definitiva es:
$$y{\left(x \right)} = C_{3} e^{- \frac{a x}{2}} e^{- \frac{x \sqrt{a^{2} - 4 b}}{2}} + C_{4} e^{- \frac{a x}{2}} e^{\frac{x \sqrt{a^{2} - 4 b}}{2}} + \left(\begin{cases} \frac{2 c e^{x} e^{\frac{a x}{2}}}{- a^{2} e^{\frac{x \sqrt{a^{2} - 4 b}}{2}} + a \sqrt{a^{2} - 4 b} e^{\frac{x \sqrt{a^{2} - 4 b}}{2}} + 4 b e^{\frac{x \sqrt{a^{2} - 4 b}}{2}} + 2 \sqrt{a^{2} - 4 b} e^{\frac{x \sqrt{a^{2} - 4 b}}{2}}} & \text{for}\: - a^{2} + a \sqrt{a^{2} - 4 b} + 4 b + 2 \sqrt{a^{2} - 4 b} \neq 0 \\\frac{c x}{\sqrt{a^{2} - 4 b}} & \text{otherwise} \end{cases}\right) e^{- \frac{a x}{2}} e^{\frac{x \sqrt{a^{2} - 4 b}}{2}} + \left(\begin{cases} - \frac{2 c e^{x} e^{\frac{a x}{2}} e^{\frac{x \sqrt{a^{2} - 4 b}}{2}}}{a^{2} + a \sqrt{a^{2} - 4 b} - 4 b + 2 \sqrt{a^{2} - 4 b}} & \text{for}\: a^{2} + a \sqrt{a^{2} - 4 b} - 4 b + 2 \sqrt{a^{2} - 4 b} \neq 0 \\- \frac{c x}{\sqrt{a^{2} - 4 b}} & \text{otherwise} \end{cases}\right) e^{- \frac{a x}{2}} e^{- \frac{x \sqrt{a^{2} - 4 b}}{2}}$$
donde C3 y C4 hay son constantes
Respuesta [src]
             /        __________\         /   __________    \            
             |       /  2       |         |  /  2           |            
           x*\-a - \/  a  - 4*b /       x*\\/  a  - 4*b  - a/            
           ----------------------       ---------------------         x  
                     2                            2                c*e   
y(x) = C1*e                       + C2*e                      + ---------
                                                                1 + a + b
$$y{\left(x \right)} = C_{1} e^{\frac{x \left(- a - \sqrt{a^{2} - 4 b}\right)}{2}} + C_{2} e^{\frac{x \left(- a + \sqrt{a^{2} - 4 b}\right)}{2}} + \frac{c e^{x}}{a + b + 1}$$
Clasificación
nth linear constant coeff undetermined coefficients
nth linear constant coeff variation of parameters
nth linear constant coeff variation of parameters Integral