Sr Examen

Otras calculadoras


1+x^2/2
  • ¿Cómo usar?

  • Gráfico de la función y =:
  • 3/(x^2+1) 3/(x^2+1)
  • (1/3)^x (1/3)^x
  • x/(x^3+2) x/(x^3+2)
  • y=2x-3 y=2x-3
  • Integral de d{x}:
  • 1+x^2/2
  • Límite de la función:
  • 1+x^2/2 1+x^2/2
  • Expresiones idénticas

  • uno +x^ dos / dos
  • 1 más x al cuadrado dividir por 2
  • uno más x en el grado dos dividir por dos
  • 1+x2/2
  • 1+x²/2
  • 1+x en el grado 2/2
  • 1+x^2 dividir por 2
  • Expresiones semejantes

  • 1-x^2/2

Gráfico de la función y = 1+x^2/2

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
            2
           x 
f(x) = 1 + --
           2 
$$f{\left(x \right)} = \frac{x^{2}}{2} + 1$$
f = x^2/2 + 1
Gráfico de la función
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$\frac{x^{2}}{2} + 1 = 0$$
Resolvermos esta ecuación
Solución no hallada,
puede ser que el gráfico no cruce el eje X
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en 1 + x^2/2.
$$\frac{0^{2}}{2} + 1$$
Resultado:
$$f{\left(0 \right)} = 1$$
Punto:
(0, 1)
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$x = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = 0$$
Signos de extremos en los puntos:
(0, 1)


Intervalos de crecimiento y decrecimiento de la función:
Hallemos los intervalos donde la función crece y decrece y también los puntos mínimos y máximos de la función, para lo cual miramos cómo se comporta la función en los extremos con desviación mínima del extremo:
Puntos mínimos de la función:
$$x_{1} = 0$$
La función no tiene puntos máximos
Decrece en los intervalos
$$\left[0, \infty\right)$$
Crece en los intervalos
$$\left(-\infty, 0\right]$$
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$1 = 0$$
Resolvermos esta ecuación
Soluciones no halladas,
tal vez la función no tenga flexiones
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
$$\lim_{x \to -\infty}\left(\frac{x^{2}}{2} + 1\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la izquierda
$$\lim_{x \to \infty}\left(\frac{x^{2}}{2} + 1\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la derecha
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función 1 + x^2/2, dividida por x con x->+oo y x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\frac{x^{2}}{2} + 1}{x}\right) = -\infty$$
Tomamos como el límite
es decir,
no hay asíntota inclinada a la izquierda
$$\lim_{x \to \infty}\left(\frac{\frac{x^{2}}{2} + 1}{x}\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota inclinada a la derecha
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$\frac{x^{2}}{2} + 1 = \frac{x^{2}}{2} + 1$$
- Sí
$$\frac{x^{2}}{2} + 1 = - \frac{x^{2}}{2} - 1$$
- No
es decir, función
es
par
Gráfico
Gráfico de la función y = 1+x^2/2