Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada$$\frac{2 \left(- \frac{2 x \left(\frac{x \left(2 x - 1\right)}{x^{2} - 9} - 1\right)}{x^{2} - 9} - \frac{- \frac{4 x^{2} \left(2 x - 1\right)}{x^{2} - 9} + 6 x - 1}{x^{2} - 9} + \frac{2 \left(\frac{x \left(2 x - 1\right)}{x^{2} - 9} - 1\right)}{2 x - 1}\right)}{2 x - 1} = 0$$
Resolvermos esta ecuaciónRaíces de esta ecuación
$$x_{1} = - \frac{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}{2} + \frac{1}{2} + \frac{\sqrt{- \frac{140}{3} - 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}} - \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + \frac{35}{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}}}{2}$$
$$x_{2} = - \frac{\sqrt{- \frac{140}{3} - 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}} - \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + \frac{35}{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}}}{2} - \frac{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}{2} + \frac{1}{2}$$
Además hay que calcular los límites de y'' para los argumentos tendientes a los puntos de indeterminación de la función:
Puntos donde hay indeterminación:
$$x_{1} = -3$$
$$x_{2} = 3$$
$$\lim_{x \to -3^-}\left(\frac{2 \left(- \frac{2 x \left(\frac{x \left(2 x - 1\right)}{x^{2} - 9} - 1\right)}{x^{2} - 9} - \frac{- \frac{4 x^{2} \left(2 x - 1\right)}{x^{2} - 9} + 6 x - 1}{x^{2} - 9} + \frac{2 \left(\frac{x \left(2 x - 1\right)}{x^{2} - 9} - 1\right)}{2 x - 1}\right)}{2 x - 1}\right) = \infty$$
$$\lim_{x \to -3^+}\left(\frac{2 \left(- \frac{2 x \left(\frac{x \left(2 x - 1\right)}{x^{2} - 9} - 1\right)}{x^{2} - 9} - \frac{- \frac{4 x^{2} \left(2 x - 1\right)}{x^{2} - 9} + 6 x - 1}{x^{2} - 9} + \frac{2 \left(\frac{x \left(2 x - 1\right)}{x^{2} - 9} - 1\right)}{2 x - 1}\right)}{2 x - 1}\right) = \infty$$
- los límites son iguales, es decir omitimos el punto correspondiente
$$\lim_{x \to 3^-}\left(\frac{2 \left(- \frac{2 x \left(\frac{x \left(2 x - 1\right)}{x^{2} - 9} - 1\right)}{x^{2} - 9} - \frac{- \frac{4 x^{2} \left(2 x - 1\right)}{x^{2} - 9} + 6 x - 1}{x^{2} - 9} + \frac{2 \left(\frac{x \left(2 x - 1\right)}{x^{2} - 9} - 1\right)}{2 x - 1}\right)}{2 x - 1}\right) = \infty$$
$$\lim_{x \to 3^+}\left(\frac{2 \left(- \frac{2 x \left(\frac{x \left(2 x - 1\right)}{x^{2} - 9} - 1\right)}{x^{2} - 9} - \frac{- \frac{4 x^{2} \left(2 x - 1\right)}{x^{2} - 9} + 6 x - 1}{x^{2} - 9} + \frac{2 \left(\frac{x \left(2 x - 1\right)}{x^{2} - 9} - 1\right)}{2 x - 1}\right)}{2 x - 1}\right) = \infty$$
- los límites son iguales, es decir omitimos el punto correspondiente
Intervalos de convexidad y concavidad:Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
$$\left(-\infty, - \frac{\sqrt{- \frac{140}{3} - 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}} - \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + \frac{35}{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}}}{2} - \frac{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}{2} + \frac{1}{2}\right] \cup \left[- \frac{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}{2} + \frac{1}{2} + \frac{\sqrt{- \frac{140}{3} - 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}} - \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + \frac{35}{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}}}{2}, \infty\right)$$
Convexa en los intervalos
$$\left[- \frac{\sqrt{- \frac{140}{3} - 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}} - \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + \frac{35}{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}}}{2} - \frac{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}{2} + \frac{1}{2}, - \frac{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}{2} + \frac{1}{2} + \frac{\sqrt{- \frac{140}{3} - 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}} - \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + \frac{35}{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}}}{2}\right]$$