Sr Examen

Otras calculadoras

  • ¿Cómo usar?

  • Gráfico de la función y =:
  • 7-x-2*x^2 7-x-2*x^2
  • y=x^3 y=x^3
  • (3*x-4)^40/(x^2-2)^36 (3*x-4)^40/(x^2-2)^36
  • y=x^2-x y=x^2-x
  • Expresiones idénticas

  • x^ tres - seis *x^ dos + nueve *x- uno
  • x al cubo menos 6 multiplicar por x al cuadrado más 9 multiplicar por x menos 1
  • x en el grado tres menos seis multiplicar por x en el grado dos más nueve multiplicar por x menos uno
  • x3-6*x2+9*x-1
  • x³-6*x²+9*x-1
  • x en el grado 3-6*x en el grado 2+9*x-1
  • x^3-6x^2+9x-1
  • x3-6x2+9x-1
  • Expresiones semejantes

  • x^3-6*x^2+9*x+1
  • x^3+6*x^2+9*x-1
  • x^3-6*x^2-9*x-1

Gráfico de la función y = x^3-6*x^2+9*x-1

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
        3      2          
f(x) = x  - 6*x  + 9*x - 1
$$f{\left(x \right)} = \left(9 x + \left(x^{3} - 6 x^{2}\right)\right) - 1$$
f = 9*x + x^3 - 6*x^2 - 1
Gráfico de la función
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$\left(9 x + \left(x^{3} - 6 x^{2}\right)\right) - 1 = 0$$
Resolvermos esta ecuación
Puntos de cruce con el eje X:

Solución analítica
$$x_{1} = 2 - \frac{\sqrt[3]{\frac{27}{2} + \frac{27 \sqrt{3} i}{2}}}{3} - \frac{3}{\sqrt[3]{\frac{27}{2} + \frac{27 \sqrt{3} i}{2}}}$$
Solución numérica
$$x_{1} = 2.34729635533386$$
$$x_{2} = 0.120614758428183$$
$$x_{3} = 3.53208888623796$$
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en x^3 - 6*x^2 + 9*x - 1.
$$-1 + \left(\left(0^{3} - 6 \cdot 0^{2}\right) + 0 \cdot 9\right)$$
Resultado:
$$f{\left(0 \right)} = -1$$
Punto:
(0, -1)
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$3 x^{2} - 12 x + 9 = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = 1$$
$$x_{2} = 3$$
Signos de extremos en los puntos:
(1, 3)

(3, -1)


Intervalos de crecimiento y decrecimiento de la función:
Hallemos los intervalos donde la función crece y decrece y también los puntos mínimos y máximos de la función, para lo cual miramos cómo se comporta la función en los extremos con desviación mínima del extremo:
Puntos mínimos de la función:
$$x_{1} = 3$$
Puntos máximos de la función:
$$x_{1} = 1$$
Decrece en los intervalos
$$\left(-\infty, 1\right] \cup \left[3, \infty\right)$$
Crece en los intervalos
$$\left[1, 3\right]$$
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$6 \left(x - 2\right) = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = 2$$

Intervalos de convexidad y concavidad:
Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
$$\left[2, \infty\right)$$
Convexa en los intervalos
$$\left(-\infty, 2\right]$$
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
$$\lim_{x \to -\infty}\left(\left(9 x + \left(x^{3} - 6 x^{2}\right)\right) - 1\right) = -\infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la izquierda
$$\lim_{x \to \infty}\left(\left(9 x + \left(x^{3} - 6 x^{2}\right)\right) - 1\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la derecha
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función x^3 - 6*x^2 + 9*x - 1, dividida por x con x->+oo y x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\left(9 x + \left(x^{3} - 6 x^{2}\right)\right) - 1}{x}\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota inclinada a la izquierda
$$\lim_{x \to \infty}\left(\frac{\left(9 x + \left(x^{3} - 6 x^{2}\right)\right) - 1}{x}\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota inclinada a la derecha
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$\left(9 x + \left(x^{3} - 6 x^{2}\right)\right) - 1 = - x^{3} - 6 x^{2} - 9 x - 1$$
- No
$$\left(9 x + \left(x^{3} - 6 x^{2}\right)\right) - 1 = x^{3} + 6 x^{2} + 9 x + 1$$
- No
es decir, función
no es
par ni impar