Sr Examen

Otras calculadoras

Gráfico de la función y = log(5)*(-x^2+2x-1)

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
              /   2          \
f(x) = log(5)*\- x  + 2*x - 1/
$$f{\left(x \right)} = \left(\left(- x^{2} + 2 x\right) - 1\right) \log{\left(5 \right)}$$
f = (-x^2 + 2*x - 1)*log(5)
Gráfico de la función
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$\left(\left(- x^{2} + 2 x\right) - 1\right) \log{\left(5 \right)} = 0$$
Resolvermos esta ecuación
Puntos de cruce con el eje X:

Solución analítica
$$x_{1} = 1$$
Solución numérica
$$x_{1} = 1$$
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en log(5)*(-x^2 + 2*x - 1).
$$\left(-1 + \left(- 0^{2} + 0 \cdot 2\right)\right) \log{\left(5 \right)}$$
Resultado:
$$f{\left(0 \right)} = - \log{\left(5 \right)}$$
Punto:
(0, -log(5))
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$\left(2 - 2 x\right) \log{\left(5 \right)} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = 1$$
Signos de extremos en los puntos:
(1, 0)


Intervalos de crecimiento y decrecimiento de la función:
Hallemos los intervalos donde la función crece y decrece y también los puntos mínimos y máximos de la función, para lo cual miramos cómo se comporta la función en los extremos con desviación mínima del extremo:
La función no tiene puntos mínimos
Puntos máximos de la función:
$$x_{1} = 1$$
Decrece en los intervalos
$$\left(-\infty, 1\right]$$
Crece en los intervalos
$$\left[1, \infty\right)$$
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$- 2 \log{\left(5 \right)} = 0$$
Resolvermos esta ecuación
Soluciones no halladas,
tal vez la función no tenga flexiones
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
$$\lim_{x \to -\infty}\left(\left(\left(- x^{2} + 2 x\right) - 1\right) \log{\left(5 \right)}\right) = -\infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la izquierda
$$\lim_{x \to \infty}\left(\left(\left(- x^{2} + 2 x\right) - 1\right) \log{\left(5 \right)}\right) = -\infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la derecha
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función log(5)*(-x^2 + 2*x - 1), dividida por x con x->+oo y x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\left(\left(- x^{2} + 2 x\right) - 1\right) \log{\left(5 \right)}}{x}\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota inclinada a la izquierda
$$\lim_{x \to \infty}\left(\frac{\left(\left(- x^{2} + 2 x\right) - 1\right) \log{\left(5 \right)}}{x}\right) = -\infty$$
Tomamos como el límite
es decir,
no hay asíntota inclinada a la derecha
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$\left(\left(- x^{2} + 2 x\right) - 1\right) \log{\left(5 \right)} = \left(- x^{2} - 2 x - 1\right) \log{\left(5 \right)}$$
- No
$$\left(\left(- x^{2} + 2 x\right) - 1\right) \log{\left(5 \right)} = - \left(- x^{2} - 2 x - 1\right) \log{\left(5 \right)}$$
- No
es decir, función
no es
par ni impar