Sr Examen

Otras calculadoras

  • ¿Cómo usar?

  • Gráfico de la función y =:
  • y=(x+1)^3 y=(x+1)^3
  • 2*x^2-6*x 2*x^2-6*x
  • y=5x y=5x
  • y=4^x y=4^x
  • Integral de d{x}:
  • (16-x^2)^(1/2)
  • Expresiones idénticas

  • (dieciséis -x^ dos)^(uno / dos)
  • (16 menos x al cuadrado ) en el grado (1 dividir por 2)
  • (dieciséis menos x en el grado dos) en el grado (uno dividir por dos)
  • (16-x2)(1/2)
  • 16-x21/2
  • (16-x²)^(1/2)
  • (16-x en el grado 2) en el grado (1/2)
  • 16-x^2^1/2
  • (16-x^2)^(1 dividir por 2)
  • Expresiones semejantes

  • (16+x^2)^(1/2)

Gráfico de la función y = (16-x^2)^(1/2)

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
          _________
         /       2 
f(x) = \/  16 - x  
$$f{\left(x \right)} = \sqrt{16 - x^{2}}$$
f = sqrt(16 - x^2)
Gráfico de la función
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$\sqrt{16 - x^{2}} = 0$$
Resolvermos esta ecuación
Puntos de cruce con el eje X:

Solución analítica
$$x_{1} = -4$$
$$x_{2} = 4$$
Solución numérica
$$x_{1} = 4$$
$$x_{2} = -4$$
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en sqrt(16 - x^2).
$$\sqrt{16 - 0^{2}}$$
Resultado:
$$f{\left(0 \right)} = 4$$
Punto:
(0, 4)
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$- \frac{x}{\sqrt{16 - x^{2}}} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = 0$$
Signos de extremos en los puntos:
(0, 4)


Intervalos de crecimiento y decrecimiento de la función:
Hallemos los intervalos donde la función crece y decrece y también los puntos mínimos y máximos de la función, para lo cual miramos cómo se comporta la función en los extremos con desviación mínima del extremo:
La función no tiene puntos mínimos
Puntos máximos de la función:
$$x_{1} = 0$$
Decrece en los intervalos
$$\left(-\infty, 0\right]$$
Crece en los intervalos
$$\left[0, \infty\right)$$
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$- \frac{\frac{x^{2}}{16 - x^{2}} + 1}{\sqrt{16 - x^{2}}} = 0$$
Resolvermos esta ecuación
Soluciones no halladas,
tal vez la función no tenga flexiones
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
$$\lim_{x \to -\infty} \sqrt{16 - x^{2}} = \infty i$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la izquierda
$$\lim_{x \to \infty} \sqrt{16 - x^{2}} = \infty i$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la derecha
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función sqrt(16 - x^2), dividida por x con x->+oo y x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\sqrt{16 - x^{2}}}{x}\right) = - i$$
Tomamos como el límite
es decir,
ecuación de la asíntota inclinada a la izquierda:
$$y = - i x$$
$$\lim_{x \to \infty}\left(\frac{\sqrt{16 - x^{2}}}{x}\right) = i$$
Tomamos como el límite
es decir,
ecuación de la asíntota inclinada a la derecha:
$$y = i x$$
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$\sqrt{16 - x^{2}} = \sqrt{16 - x^{2}}$$
- Sí
$$\sqrt{16 - x^{2}} = - \sqrt{16 - x^{2}}$$
- No
es decir, función
es
par