Sr Examen

Otras calculadoras


-((1+2*x)/(x+1)^2)
  • ¿Cómo usar?

  • Gráfico de la función y =:
  • x-x^3 x-x^3
  • x^2/(x-3) x^2/(x-3)
  • x^2/(x^2+1) x^2/(x^2+1)
  • -x^3+x -x^3+x
  • Expresiones idénticas

  • -((uno + dos *x)/(x+ uno)^ dos)
  • menos ((1 más 2 multiplicar por x) dividir por (x más 1) al cuadrado )
  • menos ((uno más dos multiplicar por x) dividir por (x más uno) en el grado dos)
  • -((1+2*x)/(x+1)2)
  • -1+2*x/x+12
  • -((1+2*x)/(x+1)²)
  • -((1+2*x)/(x+1) en el grado 2)
  • -((1+2x)/(x+1)^2)
  • -((1+2x)/(x+1)2)
  • -1+2x/x+12
  • -1+2x/x+1^2
  • -((1+2*x) dividir por (x+1)^2)
  • Expresiones semejantes

  • -((1-2*x)/(x+1)^2)
  • -((1+2*x)/(x-1)^2)
  • ((1+2*x)/(x+1)^2)

Gráfico de la función y = -((1+2*x)/(x+1)^2)

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
       -(1 + 2*x) 
f(x) = -----------
                2 
         (x + 1)  
$$f{\left(x \right)} = - \frac{2 x + 1}{\left(x + 1\right)^{2}}$$
f = -(2*x + 1)/(x + 1)^2
Gráfico de la función
Dominio de definición de la función
Puntos en los que la función no está definida exactamente:
$$x_{1} = -1$$
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$- \frac{2 x + 1}{\left(x + 1\right)^{2}} = 0$$
Resolvermos esta ecuación
Puntos de cruce con el eje X:

Solución analítica
$$x_{1} = - \frac{1}{2}$$
Solución numérica
$$x_{1} = -0.5$$
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en -(1 + 2*x)/(x + 1)^2.
$$- \frac{0 \cdot 2 + 1}{1^{2}}$$
Resultado:
$$f{\left(0 \right)} = -1$$
Punto:
(0, -1)
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$\frac{\left(- 2 x - 2\right) \left(- 2 x - 1\right)}{\left(x + 1\right)^{4}} - \frac{2}{\left(x + 1\right)^{2}} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = 0$$
Signos de extremos en los puntos:
(0, -1)


Intervalos de crecimiento y decrecimiento de la función:
Hallemos los intervalos donde la función crece y decrece y también los puntos mínimos y máximos de la función, para lo cual miramos cómo se comporta la función en los extremos con desviación mínima del extremo:
Puntos mínimos de la función:
$$x_{1} = 0$$
La función no tiene puntos máximos
Decrece en los intervalos
$$\left[0, \infty\right)$$
Crece en los intervalos
$$\left(-\infty, 0\right]$$
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$\frac{2 \left(4 - \frac{3 \left(2 x + 1\right)}{x + 1}\right)}{\left(x + 1\right)^{3}} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = \frac{1}{2}$$
Además hay que calcular los límites de y'' para los argumentos tendientes a los puntos de indeterminación de la función:
Puntos donde hay indeterminación:
$$x_{1} = -1$$

$$\lim_{x \to -1^-}\left(\frac{2 \left(4 - \frac{3 \left(2 x + 1\right)}{x + 1}\right)}{\left(x + 1\right)^{3}}\right) = \infty$$
$$\lim_{x \to -1^+}\left(\frac{2 \left(4 - \frac{3 \left(2 x + 1\right)}{x + 1}\right)}{\left(x + 1\right)^{3}}\right) = \infty$$
- los límites son iguales, es decir omitimos el punto correspondiente

Intervalos de convexidad y concavidad:
Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
$$\left(-\infty, \frac{1}{2}\right]$$
Convexa en los intervalos
$$\left[\frac{1}{2}, \infty\right)$$
Asíntotas verticales
Hay:
$$x_{1} = -1$$
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
$$\lim_{x \to -\infty}\left(- \frac{2 x + 1}{\left(x + 1\right)^{2}}\right) = 0$$
Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la izquierda:
$$y = 0$$
$$\lim_{x \to \infty}\left(- \frac{2 x + 1}{\left(x + 1\right)^{2}}\right) = 0$$
Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la derecha:
$$y = 0$$
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función -(1 + 2*x)/(x + 1)^2, dividida por x con x->+oo y x ->-oo
$$\lim_{x \to -\infty}\left(- \frac{2 x + 1}{x \left(x + 1\right)^{2}}\right) = 0$$
Tomamos como el límite
es decir,
la inclinada coincide con la asíntota horizontal a la derecha
$$\lim_{x \to \infty}\left(- \frac{2 x + 1}{x \left(x + 1\right)^{2}}\right) = 0$$
Tomamos como el límite
es decir,
la inclinada coincide con la asíntota horizontal a la izquierda
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$- \frac{2 x + 1}{\left(x + 1\right)^{2}} = - \frac{1 - 2 x}{\left(1 - x\right)^{2}}$$
- No
$$- \frac{2 x + 1}{\left(x + 1\right)^{2}} = \frac{1 - 2 x}{\left(1 - x\right)^{2}}$$
- No
es decir, función
no es
par ni impar
Gráfico
Gráfico de la función y = -((1+2*x)/(x+1)^2)