Sr Examen

Otras calculadoras


1/3x^3-1/2x^2-2x+1

Gráfico de la función y = 1/3x^3-1/2x^2-2x+1

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
        3    2          
       x    x           
f(x) = -- - -- - 2*x + 1
       3    2           
$$f{\left(x \right)} = \left(- 2 x + \left(\frac{x^{3}}{3} - \frac{x^{2}}{2}\right)\right) + 1$$
f = -2*x + x^3/3 - x^2/2 + 1
Gráfico de la función
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$\left(- 2 x + \left(\frac{x^{3}}{3} - \frac{x^{2}}{2}\right)\right) + 1 = 0$$
Resolvermos esta ecuación
Puntos de cruce con el eje X:

Solución analítica
$$x_{1} = \frac{1}{2} + \frac{9}{4 \sqrt[3]{\frac{1}{8} + \frac{\sqrt{182} i}{4}}} + \sqrt[3]{\frac{1}{8} + \frac{\sqrt{182} i}{4}}$$
Solución numérica
$$x_{1} = 0.462955431664782$$
$$x_{2} = 3.11640041352003$$
$$x_{3} = -2.07935584518481$$
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en x^3/3 - x^2/2 - 2*x + 1.
$$\left(\left(\frac{0^{3}}{3} - \frac{0^{2}}{2}\right) - 0\right) + 1$$
Resultado:
$$f{\left(0 \right)} = 1$$
Punto:
(0, 1)
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$x^{2} - x - 2 = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = -1$$
$$x_{2} = 2$$
Signos de extremos en los puntos:
(-1, 13/6)

(2, -7/3)


Intervalos de crecimiento y decrecimiento de la función:
Hallemos los intervalos donde la función crece y decrece y también los puntos mínimos y máximos de la función, para lo cual miramos cómo se comporta la función en los extremos con desviación mínima del extremo:
Puntos mínimos de la función:
$$x_{1} = 2$$
Puntos máximos de la función:
$$x_{1} = -1$$
Decrece en los intervalos
$$\left(-\infty, -1\right] \cup \left[2, \infty\right)$$
Crece en los intervalos
$$\left[-1, 2\right]$$
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$2 x - 1 = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = \frac{1}{2}$$

Intervalos de convexidad y concavidad:
Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
$$\left[\frac{1}{2}, \infty\right)$$
Convexa en los intervalos
$$\left(-\infty, \frac{1}{2}\right]$$
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
$$\lim_{x \to -\infty}\left(\left(- 2 x + \left(\frac{x^{3}}{3} - \frac{x^{2}}{2}\right)\right) + 1\right) = -\infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la izquierda
$$\lim_{x \to \infty}\left(\left(- 2 x + \left(\frac{x^{3}}{3} - \frac{x^{2}}{2}\right)\right) + 1\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la derecha
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función x^3/3 - x^2/2 - 2*x + 1, dividida por x con x->+oo y x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\left(- 2 x + \left(\frac{x^{3}}{3} - \frac{x^{2}}{2}\right)\right) + 1}{x}\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota inclinada a la izquierda
$$\lim_{x \to \infty}\left(\frac{\left(- 2 x + \left(\frac{x^{3}}{3} - \frac{x^{2}}{2}\right)\right) + 1}{x}\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota inclinada a la derecha
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$\left(- 2 x + \left(\frac{x^{3}}{3} - \frac{x^{2}}{2}\right)\right) + 1 = - \frac{x^{3}}{3} - \frac{x^{2}}{2} + 2 x + 1$$
- No
$$\left(- 2 x + \left(\frac{x^{3}}{3} - \frac{x^{2}}{2}\right)\right) + 1 = \frac{x^{3}}{3} + \frac{x^{2}}{2} - 2 x - 1$$
- No
es decir, función
no es
par ni impar
Gráfico
Gráfico de la función y = 1/3x^3-1/2x^2-2x+1