Sr Examen

Otras calculadoras


y=(exp(x)+1)*tg(x)

Derivada de y=(exp(x)+1)*tg(x)

Función f() - derivada -er orden en el punto
v

Gráfico:

interior superior

Definida a trozos:

Solución

Ha introducido [src]
/ x    \       
\e  + 1/*tan(x)
(ex+1)tan(x)\left(e^{x} + 1\right) \tan{\left(x \right)}
(exp(x) + 1)*tan(x)
Solución detallada
  1. Se aplica la regla de la derivada de una multiplicación:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=ex+1f{\left(x \right)} = e^{x} + 1; calculamos ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. diferenciamos ex+1e^{x} + 1 miembro por miembro:

      1. Derivado exe^{x} es.

      2. La derivada de una constante 11 es igual a cero.

      Como resultado de: exe^{x}

    g(x)=tan(x)g{\left(x \right)} = \tan{\left(x \right)}; calculamos ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Reescribimos las funciones para diferenciar:

      tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

    2. Se aplica la regla de la derivada parcial:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)} y g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}.

      Para calcular ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. La derivada del seno es igual al coseno:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      Para calcular ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. La derivada del coseno es igual a menos el seno:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      Ahora aplicamos la regla de la derivada de una divesión:

      sin2(x)+cos2(x)cos2(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

    Como resultado de: (ex+1)(sin2(x)+cos2(x))cos2(x)+extan(x)\frac{\left(e^{x} + 1\right) \left(\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right)}{\cos^{2}{\left(x \right)}} + e^{x} \tan{\left(x \right)}

  2. Simplificamos:

    exsin(2x)2+ex+1cos2(x)\frac{\frac{e^{x} \sin{\left(2 x \right)}}{2} + e^{x} + 1}{\cos^{2}{\left(x \right)}}


Respuesta:

exsin(2x)2+ex+1cos2(x)\frac{\frac{e^{x} \sin{\left(2 x \right)}}{2} + e^{x} + 1}{\cos^{2}{\left(x \right)}}

Gráfica
02468-8-6-4-2-1010-500000500000
Primera derivada [src]
/       2   \ / x    \    x       
\1 + tan (x)/*\e  + 1/ + e *tan(x)
(ex+1)(tan2(x)+1)+extan(x)\left(e^{x} + 1\right) \left(\tan^{2}{\left(x \right)} + 1\right) + e^{x} \tan{\left(x \right)}
Segunda derivada [src]
 x            /       2   \  x     /       2   \ /     x\       
e *tan(x) + 2*\1 + tan (x)/*e  + 2*\1 + tan (x)/*\1 + e /*tan(x)
2(ex+1)(tan2(x)+1)tan(x)+2(tan2(x)+1)ex+extan(x)2 \left(e^{x} + 1\right) \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 2 \left(\tan^{2}{\left(x \right)} + 1\right) e^{x} + e^{x} \tan{\left(x \right)}
Tercera derivada [src]
 x            /       2   \  x     /       2   \ /         2   \ /     x\     /       2   \  x       
e *tan(x) + 3*\1 + tan (x)/*e  + 2*\1 + tan (x)/*\1 + 3*tan (x)/*\1 + e / + 6*\1 + tan (x)/*e *tan(x)
2(ex+1)(tan2(x)+1)(3tan2(x)+1)+6(tan2(x)+1)extan(x)+3(tan2(x)+1)ex+extan(x)2 \left(e^{x} + 1\right) \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) + 6 \left(\tan^{2}{\left(x \right)} + 1\right) e^{x} \tan{\left(x \right)} + 3 \left(\tan^{2}{\left(x \right)} + 1\right) e^{x} + e^{x} \tan{\left(x \right)}
Gráfico
Derivada de y=(exp(x)+1)*tg(x)