Sr Examen

Otras calculadoras

  • ¿Cómo usar?

  • Gráfico de la función y =:
  • (x+4)/e^(x+4) (x+4)/e^(x+4)
  • x^3/3-4*x x^3/3-4*x
  • x^3-6*x^2+9*x+1 x^3-6*x^2+9*x+1
  • y=x+2 y=x+2
  • Derivada de:
  • 1/x+1/x^2 1/x+1/x^2
  • Expresiones idénticas

  • uno /x+ uno /x^ dos
  • 1 dividir por x más 1 dividir por x al cuadrado
  • uno dividir por x más uno dividir por x en el grado dos
  • 1/x+1/x2
  • 1/x+1/x²
  • 1/x+1/x en el grado 2
  • 1 dividir por x+1 dividir por x^2
  • Expresiones semejantes

  • 1/x-1/x^2

Gráfico de la función y = 1/x+1/x^2

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
       1   1 
f(x) = - + --
       x    2
           x 
$$f{\left(x \right)} = \frac{1}{x^{2}} + \frac{1}{x}$$
f = 1/(x^2) + 1/x
Gráfico de la función
Dominio de definición de la función
Puntos en los que la función no está definida exactamente:
$$x_{1} = 0$$
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$\frac{1}{x^{2}} + \frac{1}{x} = 0$$
Resolvermos esta ecuación
Puntos de cruce con el eje X:

Solución analítica
$$x_{1} = -1$$
Solución numérica
$$x_{1} = -1$$
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en 1/x + 1/(x^2).
$$\frac{1}{0} + \frac{1}{0^{2}}$$
Resultado:
$$f{\left(0 \right)} = \text{NaN}$$
- no hay soluciones de la ecuación
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$- \frac{2}{x x^{2}} - \frac{1}{x^{2}} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = -2$$
Signos de extremos en los puntos:
(-2, -1/4)


Intervalos de crecimiento y decrecimiento de la función:
Hallemos los intervalos donde la función crece y decrece y también los puntos mínimos y máximos de la función, para lo cual miramos cómo se comporta la función en los extremos con desviación mínima del extremo:
Puntos mínimos de la función:
$$x_{1} = -2$$
La función no tiene puntos máximos
Decrece en los intervalos
$$\left[-2, \infty\right)$$
Crece en los intervalos
$$\left(-\infty, -2\right]$$
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$\frac{2 \left(1 + \frac{3}{x}\right)}{x^{3}} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = -3$$
Además hay que calcular los límites de y'' para los argumentos tendientes a los puntos de indeterminación de la función:
Puntos donde hay indeterminación:
$$x_{1} = 0$$

$$\lim_{x \to 0^-}\left(\frac{2 \left(1 + \frac{3}{x}\right)}{x^{3}}\right) = \infty$$
$$\lim_{x \to 0^+}\left(\frac{2 \left(1 + \frac{3}{x}\right)}{x^{3}}\right) = \infty$$
- los límites son iguales, es decir omitimos el punto correspondiente

Intervalos de convexidad y concavidad:
Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
$$\left[-3, \infty\right)$$
Convexa en los intervalos
$$\left(-\infty, -3\right]$$
Asíntotas verticales
Hay:
$$x_{1} = 0$$
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x^{2}} + \frac{1}{x}\right) = 0$$
Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la izquierda:
$$y = 0$$
$$\lim_{x \to \infty}\left(\frac{1}{x^{2}} + \frac{1}{x}\right) = 0$$
Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la derecha:
$$y = 0$$
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función 1/x + 1/(x^2), dividida por x con x->+oo y x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\frac{1}{x^{2}} + \frac{1}{x}}{x}\right) = 0$$
Tomamos como el límite
es decir,
la inclinada coincide con la asíntota horizontal a la derecha
$$\lim_{x \to \infty}\left(\frac{\frac{1}{x^{2}} + \frac{1}{x}}{x}\right) = 0$$
Tomamos como el límite
es decir,
la inclinada coincide con la asíntota horizontal a la izquierda
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$\frac{1}{x^{2}} + \frac{1}{x} = \frac{1}{x^{2}} - \frac{1}{x}$$
- No
$$\frac{1}{x^{2}} + \frac{1}{x} = - \frac{1}{x^{2}} + \frac{1}{x}$$
- No
es decir, función
no es
par ni impar