Sr Examen

Gráfico de la función y = 2x|x|+x^2-6x

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
                  2      
f(x) = 2*x*|x| + x  - 6*x
$$f{\left(x \right)} = - 6 x + \left(x^{2} + 2 x \left|{x}\right|\right)$$
f = -6*x + x^2 + (2*x)*|x|
Gráfico de la función
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$- 6 x + \left(x^{2} + 2 x \left|{x}\right|\right) = 0$$
Resolvermos esta ecuación
Puntos de cruce con el eje X:

Solución analítica
$$x_{1} = -6$$
$$x_{2} = 0$$
$$x_{3} = 2$$
Solución numérica
$$x_{1} = 2$$
$$x_{2} = -6$$
$$x_{3} = 0$$
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en (2*x)*|x| + x^2 - 6*x.
$$\left(0 \cdot 2 \left|{0}\right| + 0^{2}\right) - 0$$
Resultado:
$$f{\left(0 \right)} = 0$$
Punto:
(0, 0)
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$2 x \operatorname{sign}{\left(x \right)} + 2 x + 2 \left|{x}\right| - 6 = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = 1$$
Signos de extremos en los puntos:
(1, -3)


Intervalos de crecimiento y decrecimiento de la función:
Hallemos los intervalos donde la función crece y decrece y también los puntos mínimos y máximos de la función, para lo cual miramos cómo se comporta la función en los extremos con desviación mínima del extremo:
Puntos mínimos de la función:
$$x_{1} = 1$$
La función no tiene puntos máximos
Decrece en los intervalos
$$\left[1, \infty\right)$$
Crece en los intervalos
$$\left(-\infty, 1\right]$$
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$2 \left(2 x \delta\left(x\right) + 2 \operatorname{sign}{\left(x \right)} + 1\right) = 0$$
Resolvermos esta ecuación
Soluciones no halladas,
tal vez la función no tenga flexiones
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
$$\lim_{x \to -\infty}\left(- 6 x + \left(x^{2} + 2 x \left|{x}\right|\right)\right) = -\infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la izquierda
$$\lim_{x \to \infty}\left(- 6 x + \left(x^{2} + 2 x \left|{x}\right|\right)\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la derecha
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función (2*x)*|x| + x^2 - 6*x, dividida por x con x->+oo y x ->-oo
$$\lim_{x \to -\infty}\left(\frac{- 6 x + \left(x^{2} + 2 x \left|{x}\right|\right)}{x}\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota inclinada a la izquierda
$$\lim_{x \to \infty}\left(\frac{- 6 x + \left(x^{2} + 2 x \left|{x}\right|\right)}{x}\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota inclinada a la derecha
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$- 6 x + \left(x^{2} + 2 x \left|{x}\right|\right) = x^{2} - 2 x \left|{x}\right| + 6 x$$
- No
$$- 6 x + \left(x^{2} + 2 x \left|{x}\right|\right) = - x^{2} + 2 x \left|{x}\right| - 6 x$$
- No
es decir, función
no es
par ni impar