Sr Examen

Otras calculadoras


tan(x)*(3*x+10)

Gráfico de la función y = tan(x)*(3*x+10)

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
f(x) = tan(x)*(3*x + 10)
f(x)=(3x+10)tan(x)f{\left(x \right)} = \left(3 x + 10\right) \tan{\left(x \right)}
f = (3*x + 10)*tan(x)
Gráfico de la función
02468-8-6-4-2-1010-25002500
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
(3x+10)tan(x)=0\left(3 x + 10\right) \tan{\left(x \right)} = 0
Resolvermos esta ecuación
Puntos de cruce con el eje X:

Solución analítica
x1=103x_{1} = - \frac{10}{3}
x2=0x_{2} = 0
x3=πx_{3} = \pi
Solución numérica
x1=59.6902604182061x_{1} = -59.6902604182061
x2=62.8318530717959x_{2} = -62.8318530717959
x3=97.3893722612836x_{3} = -97.3893722612836
x4=87.9645943005142x_{4} = 87.9645943005142
x5=56.5486677646163x_{5} = -56.5486677646163
x6=31.4159265358979x_{6} = 31.4159265358979
x7=69.1150383789755x_{7} = 69.1150383789755
x8=37.6991118430775x_{8} = -37.6991118430775
x9=81.6814089933346x_{9} = -81.6814089933346
x10=84.8230016469244x_{10} = -84.8230016469244
x11=21.9911485751286x_{11} = -21.9911485751286
x12=47.1238898038469x_{12} = 47.1238898038469
x13=15.707963267949x_{13} = -15.707963267949
x14=12.5663706143592x_{14} = -12.5663706143592
x15=12.5663706143592x_{15} = 12.5663706143592
x16=87.9645943005142x_{16} = -87.9645943005142
x17=53.4070751110265x_{17} = 53.4070751110265
x18=72.2566310325652x_{18} = 72.2566310325652
x19=100.530964914873x_{19} = -100.530964914873
x20=3.14159265358979x_{20} = -3.14159265358979
x21=34.5575191894877x_{21} = 34.5575191894877
x22=94.2477796076938x_{22} = -94.2477796076938
x23=6.28318530717959x_{23} = 6.28318530717959
x24=69.1150383789755x_{24} = -69.1150383789755
x25=97.3893722612836x_{25} = 97.3893722612836
x26=0x_{26} = 0
x27=65.9734457253857x_{27} = 65.9734457253857
x28=50.2654824574367x_{28} = -50.2654824574367
x29=15.707963267949x_{29} = 15.707963267949
x30=3.14159265358979x_{30} = 3.14159265358979
x31=3.33333333333333x_{31} = -3.33333333333333
x32=25.1327412287183x_{32} = -25.1327412287183
x33=18.8495559215388x_{33} = -18.8495559215388
x34=53.4070751110265x_{34} = -53.4070751110265
x35=40.8407044966673x_{35} = 40.8407044966673
x36=43.9822971502571x_{36} = -43.9822971502571
x37=37.6991118430775x_{37} = 37.6991118430775
x38=18.8495559215388x_{38} = 18.8495559215388
x39=6.28318530717959x_{39} = -6.28318530717959
x40=78.5398163397448x_{40} = -78.5398163397448
x41=40.8407044966673x_{41} = -40.8407044966673
x42=43.9822971502571x_{42} = 43.9822971502571
x43=56.5486677646163x_{43} = 56.5486677646163
x44=65.9734457253857x_{44} = -65.9734457253857
x45=25.1327412287183x_{45} = 25.1327412287183
x46=78.5398163397448x_{46} = 78.5398163397448
x47=28.2743338823081x_{47} = -28.2743338823081
x48=75.398223686155x_{48} = 75.398223686155
x49=59.6902604182061x_{49} = 59.6902604182061
x50=34.5575191894877x_{50} = -34.5575191894877
x51=81.6814089933346x_{51} = 81.6814089933346
x52=47.1238898038469x_{52} = -47.1238898038469
x53=100.530964914873x_{53} = 100.530964914873
x54=9.42477796076938x_{54} = -9.42477796076938
x55=75.398223686155x_{55} = -75.398223686155
x56=72.2566310325652x_{56} = -72.2566310325652
x57=31.4159265358979x_{57} = -31.4159265358979
x58=28.2743338823081x_{58} = 28.2743338823081
x59=91.106186954104x_{59} = -91.106186954104
x60=21.9911485751286x_{60} = 21.9911485751286
x61=62.8318530717959x_{61} = 62.8318530717959
x62=9.42477796076938x_{62} = 9.42477796076938
x63=50.2654824574367x_{63} = 50.2654824574367
x64=94.2477796076938x_{64} = 94.2477796076938
x65=91.106186954104x_{65} = 91.106186954104
x66=84.8230016469244x_{66} = 84.8230016469244
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en tan(x)*(3*x + 10).
(03+10)tan(0)\left(0 \cdot 3 + 10\right) \tan{\left(0 \right)}
Resultado:
f(0)=0f{\left(0 \right)} = 0
Punto:
(0, 0)
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
primera derivada
(3x+10)(tan2(x)+1)+3tan(x)=0\left(3 x + 10\right) \left(\tan^{2}{\left(x \right)} + 1\right) + 3 \tan{\left(x \right)} = 0
Resolvermos esta ecuación
Raíces de esta ecuación
x1=3.2377588923505x_{1} = -3.2377588923505
x2=3.23775889235058x_{2} = -3.23775889235058
Signos de extremos en los puntos:
(-3.237758892350497, -0.0276584173237851)

(-3.2377588923505765, -0.0276584173237851)


Intervalos de crecimiento y decrecimiento de la función:
Hallemos los intervalos donde la función crece y decrece y también los puntos mínimos y máximos de la función, para lo cual miramos cómo se comporta la función en los extremos con desviación mínima del extremo:
Puntos mínimos de la función:
x1=3.2377588923505x_{1} = -3.2377588923505
x2=3.23775889235058x_{2} = -3.23775889235058
La función no tiene puntos máximos
Decrece en los intervalos
[3.2377588923505,)\left[-3.2377588923505, \infty\right)
Crece en los intervalos
(,3.23775889235058]\left(-\infty, -3.23775889235058\right]
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
segunda derivada
2((3x+10)(tan2(x)+1)tan(x)+3tan2(x)+3)=02 \left(\left(3 x + 10\right) \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 3 \tan^{2}{\left(x \right)} + 3\right) = 0
Resolvermos esta ecuación
Raíces de esta ecuación
x1=50.2441686487496x_{1} = -50.2441686487496
x2=15.6267979390448x_{2} = -15.6267979390448
x3=9.34607283046705x_{3} = 9.34607283046705
x4=31.3802871369734x_{4} = -31.3802871369734
x5=37.669996683877x_{5} = -37.669996683877
x6=84.8116571894028x_{6} = 84.8116571894028
x7=5.91342930708196x_{7} = -5.91342930708196
x8=9.2575557639396x_{8} = -9.2575557639396
x9=100.521336372414x_{9} = 100.521336372414
x10=34.5311153294933x_{10} = 34.5311153294933
x11=87.9527772357147x_{11} = -87.9527772357147
x12=31.3871330393231x_{12} = 31.3871330393231
x13=78.527601108279x_{13} = 78.527601108279
x14=65.9574788006444x_{14} = -65.9574788006444
x15=97.3787395004155x_{15} = -97.3787395004155
x16=37.6747312275885x_{16} = 37.6747312275885
x17=12.5033096431738x_{17} = 12.5033096431738
x18=91.0955973751213x_{18} = 91.0955973751213
x19=69.0998342411585x_{19} = -69.0998342411585
x20=87.953640273195x_{20} = 87.953640273195
x21=81.6686440515011x_{21} = -81.6686440515011
x22=59.6743906805713x_{22} = 59.6743906805713
x23=40.8180590261258x_{23} = 40.8180590261258
x24=97.3794433607847x_{24} = 97.3794433607847
x25=47.1040658435234x_{25} = 47.1040658435234
x26=69.1012336926616x_{26} = 69.1012336926616
x27=94.2375310053549x_{27} = 94.2375310053549
x28=81.669645242373x_{28} = 81.669645242373
x29=0.320469074836434x_{29} = -0.320469074836434
x30=18.7849278115159x_{30} = -18.7849278115159
x31=21.9374487044355x_{31} = -21.9374487044355
x32=21.9516199631132x_{32} = 21.9516199631132
x33=47.1010458856377x_{33} = -47.1010458856377
x34=53.3894473359673x_{34} = 53.3894473359673
x35=100.520675872232x_{35} = -100.520675872232
x36=72.243400219313x_{36} = 72.243400219313
x37=62.8150427646895x_{37} = -62.8150427646895
x38=56.5298717627801x_{38} = -56.5298717627801
x39=59.6725126445337x_{39} = -59.6725126445337
x40=25.0868038926345x_{40} = -25.0868038926345
x41=84.8107289204132x_{41} = -84.8107289204132
x42=15.6553489232706x_{42} = 15.6553489232706
x43=94.2367793683387x_{43} = -94.2367793683387
x44=25.097582744073x_{44} = 25.097582744073
x45=65.9590151193053x_{45} = 65.9590151193053
x46=91.0947929238583x_{46} = -91.0947929238583
x47=43.9611561880523x_{47} = 43.9611561880523
x48=56.5319651500606x_{48} = 56.5319651500606
x49=75.3843455216761x_{49} = -75.3843455216761
x50=34.5254708051426x_{50} = -34.5254708051426
x51=75.3855209325124x_{51} = 75.3855209325124
x52=72.2421201137578x_{52} = -72.2421201137578
x53=6.17843720274802x_{53} = 6.17843720274802
x54=28.2426748494828x_{54} = 28.2426748494828
x55=40.8140304244747x_{55} = -40.8140304244747
x56=12.4572037447165x_{56} = -12.4572037447165
x57=18.804414895452x_{57} = 18.804414895452
x58=53.3870992517387x_{58} = -53.3870992517387
x59=28.2341961996708x_{59} = -28.2341961996708
x60=78.5265180460907x_{60} = -78.5265180460907
x61=43.9576863436721x_{61} = -43.9576863436721
x62=50.2468209973041x_{62} = 50.2468209973041
x63=62.8167370813187x_{63} = 62.8167370813187
x64=2.98461567429832x_{64} = 2.98461567429832

Intervalos de convexidad y concavidad:
Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
[100.521336372414,)\left[100.521336372414, \infty\right)
Convexa en los intervalos
[5.91342930708196,0.320469074836434]\left[-5.91342930708196, -0.320469074836434\right]
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
True

Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la izquierda:
y=limx((3x+10)tan(x))y = \lim_{x \to -\infty}\left(\left(3 x + 10\right) \tan{\left(x \right)}\right)
True

Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la derecha:
y=limx((3x+10)tan(x))y = \lim_{x \to \infty}\left(\left(3 x + 10\right) \tan{\left(x \right)}\right)
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función tan(x)*(3*x + 10), dividida por x con x->+oo y x ->-oo
True

Tomamos como el límite
es decir,
ecuación de la asíntota inclinada a la izquierda:
y=xlimx((3x+10)tan(x)x)y = x \lim_{x \to -\infty}\left(\frac{\left(3 x + 10\right) \tan{\left(x \right)}}{x}\right)
True

Tomamos como el límite
es decir,
ecuación de la asíntota inclinada a la derecha:
y=xlimx((3x+10)tan(x)x)y = x \lim_{x \to \infty}\left(\frac{\left(3 x + 10\right) \tan{\left(x \right)}}{x}\right)
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
(3x+10)tan(x)=(103x)tan(x)\left(3 x + 10\right) \tan{\left(x \right)} = - \left(10 - 3 x\right) \tan{\left(x \right)}
- No
(3x+10)tan(x)=(103x)tan(x)\left(3 x + 10\right) \tan{\left(x \right)} = \left(10 - 3 x\right) \tan{\left(x \right)}
- No
es decir, función
no es
par ni impar
Gráfico
Gráfico de la función y = tan(x)*(3*x+10)