Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada$$\frac{2 \left(- 4 x + \left(2 x + 1\right) \left(\frac{4 x^{2}}{x^{2} + 2} - 1\right)\right)}{\left(x^{2} + 2\right)^{2}} = 0$$
Resolvermos esta ecuaciónRaíces de esta ecuación
$$x_{1} = - \frac{1}{2} - \frac{\sqrt[3]{\frac{243}{8} + \frac{243 \sqrt{2} i}{4}}}{3} - \frac{27}{4 \sqrt[3]{\frac{243}{8} + \frac{243 \sqrt{2} i}{4}}}$$
Intervalos de convexidad y concavidad:Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
$$\left[- 3 \cos{\left(\frac{\operatorname{atan}{\left(2 \sqrt{2} \right)}}{3} \right)} - \frac{1}{2}, \infty\right)$$
Convexa en los intervalos
$$\left(-\infty, - 3 \cos{\left(\frac{\operatorname{atan}{\left(2 \sqrt{2} \right)}}{3} \right)} - \frac{1}{2}\right]$$