Sr Examen

Otras calculadoras

  • ¿Cómo usar?

  • Gráfico de la función y =:
  • x-8/x^4 x-8/x^4
  • y=x²-2x-8 y=x²-2x-8
  • -x^4+x^2 -x^4+x^2
  • x*e^(-x^1) x*e^(-x^1)
  • Expresiones idénticas

  • log((dos ^x)/(x*(x- uno)), dos)/(x*x)
  • logaritmo de ((2 en el grado x) dividir por (x multiplicar por (x menos 1)),2) dividir por (x multiplicar por x)
  • logaritmo de ((dos en el grado x) dividir por (x multiplicar por (x menos uno)), dos) dividir por (x multiplicar por x)
  • log((2x)/(x*(x-1)),2)/(x*x)
  • log2x/x*x-1,2/x*x
  • log((2^x)/(x(x-1)),2)/(xx)
  • log((2x)/(x(x-1)),2)/(xx)
  • log2x/xx-1,2/xx
  • log2^x/xx-1,2/xx
  • log((2^x) dividir por (x*(x-1)),2) dividir por (x*x)
  • Expresiones semejantes

  • log((2^x)/(x*(x+1)),2)/(x*x)
  • Expresiones con funciones

  • Logaritmo log
  • log(x-4,1/3)/3
  • log5(x^2+2)
  • log1/2(x-x^2)
  • log[5](×-5)
  • log(x)+tan(3*x)

Gráfico de la función y = log((2^x)/(x*(x-1)),2)/(x*x)

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
          /     x      \
          |    2       |
       log|---------, 2|
          \x*(x - 1)   /
f(x) = -----------------
              x*x       
$$f{\left(x \right)} = \frac{\log{\left(\frac{2^{x}}{x \left(x - 1\right)} \right)}}{x x}$$
f = log(2^x/((x*(x - 1)), 2)/((x*x)))
Gráfico de la función
Dominio de definición de la función
Puntos en los que la función no está definida exactamente:
$$x_{1} = 0$$
$$x_{2} = 1$$
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$\frac{\log{\left(\frac{2^{x}}{x \left(x - 1\right)} \right)}}{x x} = 0$$
Resolvermos esta ecuación
Solución no hallada,
puede ser que el gráfico no cruce el eje X
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en log(2^x/((x*(x - 1))), 2)/((x*x)).
$$\frac{\log{\left(\frac{2^{0}}{\left(-1\right) 0} \right)}}{0 \cdot 0}$$
Resultado:
$$f{\left(0 \right)} = \tilde{\infty}$$
signof no cruza Y
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$- \frac{2 \log{\left(\frac{2^{x}}{x \left(x - 1\right)} \right)}}{x^{3}} + \frac{2^{- x} \left(x - 1\right) \left(2^{x} \frac{1}{x \left(x - 1\right)} \log{\left(2 \right)} + \frac{2^{x} \left(1 - 2 x\right)}{x^{2} \left(x - 1\right)^{2}}\right)}{x} = 0$$
Resolvermos esta ecuación
Soluciones no halladas,
tal vez la función no tenga extremos
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$\frac{- \left(\frac{1}{x - 1} + \frac{1}{x}\right) \log{\left(2 \right)} - \left(\log{\left(2 \right)} - \frac{2 x - 1}{x \left(x - 1\right)}\right) \log{\left(2 \right)} + \log{\left(2 \right)}^{2} + \frac{\log{\left(2 \right)} - \frac{2 x - 1}{x \left(x - 1\right)}}{x - 1} - \frac{3 \left(\log{\left(2 \right)} - \frac{2 x - 1}{x \left(x - 1\right)}\right)}{x} - \frac{\left(2 x - 1\right) \log{\left(2 \right)}}{x \left(x - 1\right)} - \frac{2}{x \left(x - 1\right)} + \frac{2 \left(2 x - 1\right)}{x \left(x - 1\right)^{2}} + \frac{6 \log{\left(\frac{2^{x}}{x \left(x - 1\right)} \right)}}{x^{2} \log{\left(2 \right)}} + \frac{2 \left(2 x - 1\right)}{x^{2} \left(x - 1\right)}}{x^{2}} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = -29843.6634110621$$
$$x_{2} = 35673.1967005545$$
$$x_{3} = -26551.5818556646$$
$$x_{4} = 18601.7919478132$$
$$x_{5} = 16080.9161418784$$
$$x_{6} = 14425.8876871349$$
$$x_{7} = -20819.449710398$$
$$x_{8} = -32318.9204139614$$
$$x_{9} = 40807.8893102958$$
$$x_{10} = -29019.7006536456$$
$$x_{11} = 32249.9666118393$$
$$x_{12} = 39096.4395583204$$
$$x_{13} = 19447.9961198605$$
$$x_{14} = -33971.654415834$$
$$x_{15} = 44230.248866796$$
$$x_{16} = -35626.2385259427$$
$$x_{17} = -16756.0419075437$$
$$x_{18} = 23701.3538044033$$
$$x_{19} = -14335.2794229881$$
$$x_{20} = 34817.3591472594$$
$$x_{21} = -36454.1772711214$$
$$x_{22} = 15249.780602589$$
$$x_{23} = -24089.8408778988$$
$$x_{24} = -30668.2050511317$$
$$x_{25} = 24554.7203194262$$
$$x_{26} = -15140.4909077556$$
$$x_{27} = -38940.3800705303$$
$$x_{28} = 45941.1124406424$$
$$x_{29} = -24909.6481665548$$
$$x_{30} = -25730.2423971061$$
$$x_{31} = 17758.0421139703$$
$$x_{32} = 25408.6171837999$$
$$x_{33} = 33961.5319375503$$
$$x_{34} = -38111.2635231714$$
$$x_{35} = -39769.8596971384$$
$$x_{36} = -27373.6280334085$$
$$x_{37} = 39952.1836912599$$
$$x_{38} = 38240.6620987307$$
$$x_{39} = -22452.7722592381$$
$$x_{40} = 42519.1681760117$$
$$x_{41} = 27972.5815048758$$
$$x_{42} = 30538.6446978985$$
$$x_{43} = -15947.4569779005$$
$$x_{44} = -28196.3453062427$$
$$x_{45} = 22848.6400920526$$
$$x_{46} = 27117.6219980893$$
$$x_{47} = 31394.2642259853$$
$$x_{48} = 43374.7346449447$$
$$x_{49} = 45085.7087129458$$
$$x_{50} = 28827.767937868$$
$$x_{51} = -37282.5242472559$$
$$x_{52} = -23270.8658164082$$
$$x_{53} = 21145.8164439012$$
$$x_{54} = -21635.61396011$$
$$x_{55} = 37384.8574391859$$
$$x_{56} = 36529.0328035831$$
$$x_{57} = 16917.4374751965$$
$$x_{58} = 29683.1351741583$$
$$x_{59} = 20296.1361315699$$
$$x_{60} = -33145.0461278718$$
$$x_{61} = 13611.9703776225$$
$$x_{62} = -20004.3439916836$$
$$x_{63} = -18377.5992343003$$
$$x_{64} = 41663.5520344179$$
$$x_{65} = 21996.7310137621$$
$$x_{66} = 33105.7289647298$$
$$x_{67} = -31493.2989897972$$
$$x_{68} = -17566.1251709502$$
$$x_{69} = 26262.944883799$$
$$x_{70} = -34798.724919209$$
$$x_{71} = -19190.3677384565$$
Además hay que calcular los límites de y'' para los argumentos tendientes a los puntos de indeterminación de la función:
Puntos donde hay indeterminación:
$$x_{1} = 0$$
$$x_{2} = 1$$

$$\lim_{x \to 0^-}\left(\frac{- \left(\frac{1}{x - 1} + \frac{1}{x}\right) \log{\left(2 \right)} - \left(\log{\left(2 \right)} - \frac{2 x - 1}{x \left(x - 1\right)}\right) \log{\left(2 \right)} + \log{\left(2 \right)}^{2} + \frac{\log{\left(2 \right)} - \frac{2 x - 1}{x \left(x - 1\right)}}{x - 1} - \frac{3 \left(\log{\left(2 \right)} - \frac{2 x - 1}{x \left(x - 1\right)}\right)}{x} - \frac{\left(2 x - 1\right) \log{\left(2 \right)}}{x \left(x - 1\right)} - \frac{2}{x \left(x - 1\right)} + \frac{2 \left(2 x - 1\right)}{x \left(x - 1\right)^{2}} + \frac{6 \log{\left(\frac{2^{x}}{x \left(x - 1\right)} \right)}}{x^{2} \log{\left(2 \right)}} + \frac{2 \left(2 x - 1\right)}{x^{2} \left(x - 1\right)}}{x^{2}}\right) = \infty$$
$$\lim_{x \to 0^+}\left(\frac{- \left(\frac{1}{x - 1} + \frac{1}{x}\right) \log{\left(2 \right)} - \left(\log{\left(2 \right)} - \frac{2 x - 1}{x \left(x - 1\right)}\right) \log{\left(2 \right)} + \log{\left(2 \right)}^{2} + \frac{\log{\left(2 \right)} - \frac{2 x - 1}{x \left(x - 1\right)}}{x - 1} - \frac{3 \left(\log{\left(2 \right)} - \frac{2 x - 1}{x \left(x - 1\right)}\right)}{x} - \frac{\left(2 x - 1\right) \log{\left(2 \right)}}{x \left(x - 1\right)} - \frac{2}{x \left(x - 1\right)} + \frac{2 \left(2 x - 1\right)}{x \left(x - 1\right)^{2}} + \frac{6 \log{\left(\frac{2^{x}}{x \left(x - 1\right)} \right)}}{x^{2} \log{\left(2 \right)}} + \frac{2 \left(2 x - 1\right)}{x^{2} \left(x - 1\right)}}{x^{2}}\right) = \infty$$
- los límites son iguales, es decir omitimos el punto correspondiente
$$\lim_{x \to 1^-}\left(\frac{- \left(\frac{1}{x - 1} + \frac{1}{x}\right) \log{\left(2 \right)} - \left(\log{\left(2 \right)} - \frac{2 x - 1}{x \left(x - 1\right)}\right) \log{\left(2 \right)} + \log{\left(2 \right)}^{2} + \frac{\log{\left(2 \right)} - \frac{2 x - 1}{x \left(x - 1\right)}}{x - 1} - \frac{3 \left(\log{\left(2 \right)} - \frac{2 x - 1}{x \left(x - 1\right)}\right)}{x} - \frac{\left(2 x - 1\right) \log{\left(2 \right)}}{x \left(x - 1\right)} - \frac{2}{x \left(x - 1\right)} + \frac{2 \left(2 x - 1\right)}{x \left(x - 1\right)^{2}} + \frac{6 \log{\left(\frac{2^{x}}{x \left(x - 1\right)} \right)}}{x^{2} \log{\left(2 \right)}} + \frac{2 \left(2 x - 1\right)}{x^{2} \left(x - 1\right)}}{x^{2}}\right) = \infty$$
$$\lim_{x \to 1^+}\left(\frac{- \left(\frac{1}{x - 1} + \frac{1}{x}\right) \log{\left(2 \right)} - \left(\log{\left(2 \right)} - \frac{2 x - 1}{x \left(x - 1\right)}\right) \log{\left(2 \right)} + \log{\left(2 \right)}^{2} + \frac{\log{\left(2 \right)} - \frac{2 x - 1}{x \left(x - 1\right)}}{x - 1} - \frac{3 \left(\log{\left(2 \right)} - \frac{2 x - 1}{x \left(x - 1\right)}\right)}{x} - \frac{\left(2 x - 1\right) \log{\left(2 \right)}}{x \left(x - 1\right)} - \frac{2}{x \left(x - 1\right)} + \frac{2 \left(2 x - 1\right)}{x \left(x - 1\right)^{2}} + \frac{6 \log{\left(\frac{2^{x}}{x \left(x - 1\right)} \right)}}{x^{2} \log{\left(2 \right)}} + \frac{2 \left(2 x - 1\right)}{x^{2} \left(x - 1\right)}}{x^{2}}\right) = \infty$$
- los límites son iguales, es decir omitimos el punto correspondiente

Intervalos de convexidad y concavidad:
Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
No tiene corvaduras en todo el eje numérico
Asíntotas verticales
Hay:
$$x_{1} = 0$$
$$x_{2} = 1$$
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
$$\lim_{x \to -\infty}\left(\frac{\log{\left(\frac{2^{x}}{x \left(x - 1\right)} \right)}}{x x}\right) = 0$$
Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la izquierda:
$$y = 0$$
$$\lim_{x \to \infty}\left(\frac{\log{\left(\frac{2^{x}}{x \left(x - 1\right)} \right)}}{x x}\right) = 0$$
Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la derecha:
$$y = 0$$
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función log(2^x/((x*(x - 1))), 2)/((x*x)), dividida por x con x->+oo y x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\log{\left(\frac{2^{x}}{x \left(x - 1\right)} \right)}}{x^{3}}\right) = 0$$
Tomamos como el límite
es decir,
la inclinada coincide con la asíntota horizontal a la derecha
$$\lim_{x \to \infty}\left(\frac{\log{\left(\frac{2^{x}}{x \left(x - 1\right)} \right)}}{x^{3}}\right) = 0$$
Tomamos como el límite
es decir,
la inclinada coincide con la asíntota horizontal a la izquierda
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$\frac{\log{\left(\frac{2^{x}}{x \left(x - 1\right)} \right)}}{x x} = \frac{\log{\left(- \frac{2^{- x}}{x \left(- x - 1\right)} \right)}}{x^{2} \log{\left(2 \right)}}$$
- No
$$\frac{\log{\left(\frac{2^{x}}{x \left(x - 1\right)} \right)}}{x x} = - \frac{\log{\left(- \frac{2^{- x}}{x \left(- x - 1\right)} \right)}}{x^{2} \log{\left(2 \right)}}$$
- No
es decir, función
no es
par ni impar