Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada$$\frac{\frac{\left(\frac{\left(1 + \frac{2}{\log{\left(\log{\left(x \right)} \right)}}\right) \left(\log{\left(\log{\left(x \right)} \right)} + 2\right)}{\log{\left(x \right)}} + \frac{\log{\left(\log{\left(x \right)} \right)} + 2}{\log{\left(x \right)}} + \frac{2 \left(\log{\left(\log{\left(x \right)} \right)} + 2\right)}{\log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}} + \frac{\log{\left(\log{\left(x \right)} \right)}^{2} + 2 \log{\left(\log{\left(x \right)} \right)} - \frac{2 \log{\left(\log{\left(x \right)} \right)}}{\log{\left(x \right)}} - \frac{2}{\log{\left(x \right)}}}{\log{\left(\log{\left(x \right)} \right)}}\right) \sin{\left(\frac{1}{x} \right)}}{\log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}} + \frac{2 \left(\log{\left(\log{\left(x \right)} \right)} + 2\right) \cos{\left(\frac{1}{x} \right)}}{x \log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}} + \frac{2 \cos{\left(\frac{1}{x} \right)} - \frac{\sin{\left(\frac{1}{x} \right)}}{x}}{x}}{x^{2} \log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}^{2}} = 0$$
Resolvermos esta ecuaciónRaíces de esta ecuación
$$x_{1} = 4734.21640764846$$
$$x_{2} = 8525.74928207858$$
$$x_{3} = 22272.0085483679$$
$$x_{4} = 11982.735077658$$
$$x_{5} = 14506.7974696496$$
$$x_{6} = 17066.6666097022$$
$$x_{7} = 17582.3926928376$$
$$x_{8} = 12484.3311405173$$
$$x_{9} = 6130.39430398357$$
$$x_{10} = 18617.2767763802$$
$$x_{11} = 16552.134633935$$
$$x_{12} = 16038.83725317$$
$$x_{13} = 20177.6717745926$$
$$x_{14} = 13492.4801077979$$
$$x_{15} = 19136.3647917006$$
$$x_{16} = 20699.8313456432$$
$$x_{17} = 12987.6027704594$$
$$x_{18} = 4277.55217499511$$
$$x_{19} = 10488.7888169327$$
$$x_{20} = 19656.5066180118$$
$$x_{21} = 8040.93988735038$$
$$x_{22} = 10984.8783301856$$
$$x_{23} = 9502.77552018325$$
$$x_{24} = 6603.3184748473$$
$$x_{25} = 21222.9578666788$$
$$x_{26} = 23324.6294399768$$
$$x_{27} = 15526.8175173399$$
$$x_{28} = 21747.0252214732$$
$$x_{29} = 13998.8983980117$$
$$x_{30} = 9994.71898554314$$
$$x_{31} = 7079.53315738084$$
$$x_{32} = 7558.80791323059$$
$$x_{33} = 18099.2747432156$$
$$x_{34} = 5661.0244280765$$
$$x_{35} = 22797.884154918$$
$$x_{36} = 5195.51341811941$$
$$x_{37} = 11482.8901493896$$
$$x_{38} = 9013.07575527668$$
$$x_{39} = 15016.1212799033$$
Además hay que calcular los límites de y'' para los argumentos tendientes a los puntos de indeterminación de la función:
Puntos donde hay indeterminación:
$$x_{1} = 0$$
$$x_{2} = 1$$
$$x_{3} = 2.71828182845905$$
True
True
- los límites no son iguales, signo
$$x_{1} = 0$$
- es el punto de flexión
$$\lim_{x \to 1^-}\left(\frac{\frac{\left(\frac{\left(1 + \frac{2}{\log{\left(\log{\left(x \right)} \right)}}\right) \left(\log{\left(\log{\left(x \right)} \right)} + 2\right)}{\log{\left(x \right)}} + \frac{\log{\left(\log{\left(x \right)} \right)} + 2}{\log{\left(x \right)}} + \frac{2 \left(\log{\left(\log{\left(x \right)} \right)} + 2\right)}{\log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}} + \frac{\log{\left(\log{\left(x \right)} \right)}^{2} + 2 \log{\left(\log{\left(x \right)} \right)} - \frac{2 \log{\left(\log{\left(x \right)} \right)}}{\log{\left(x \right)}} - \frac{2}{\log{\left(x \right)}}}{\log{\left(\log{\left(x \right)} \right)}}\right) \sin{\left(\frac{1}{x} \right)}}{\log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}} + \frac{2 \left(\log{\left(\log{\left(x \right)} \right)} + 2\right) \cos{\left(\frac{1}{x} \right)}}{x \log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}} + \frac{2 \cos{\left(\frac{1}{x} \right)} - \frac{\sin{\left(\frac{1}{x} \right)}}{x}}{x}}{x^{2} \log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}^{2}}\right) = -\infty$$
$$\lim_{x \to 1^+}\left(\frac{\frac{\left(\frac{\left(1 + \frac{2}{\log{\left(\log{\left(x \right)} \right)}}\right) \left(\log{\left(\log{\left(x \right)} \right)} + 2\right)}{\log{\left(x \right)}} + \frac{\log{\left(\log{\left(x \right)} \right)} + 2}{\log{\left(x \right)}} + \frac{2 \left(\log{\left(\log{\left(x \right)} \right)} + 2\right)}{\log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}} + \frac{\log{\left(\log{\left(x \right)} \right)}^{2} + 2 \log{\left(\log{\left(x \right)} \right)} - \frac{2 \log{\left(\log{\left(x \right)} \right)}}{\log{\left(x \right)}} - \frac{2}{\log{\left(x \right)}}}{\log{\left(\log{\left(x \right)} \right)}}\right) \sin{\left(\frac{1}{x} \right)}}{\log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}} + \frac{2 \left(\log{\left(\log{\left(x \right)} \right)} + 2\right) \cos{\left(\frac{1}{x} \right)}}{x \log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}} + \frac{2 \cos{\left(\frac{1}{x} \right)} - \frac{\sin{\left(\frac{1}{x} \right)}}{x}}{x}}{x^{2} \log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}^{2}}\right) = \infty$$
- los límites no son iguales, signo
$$x_{2} = 1$$
- es el punto de flexión
$$\lim_{x \to 2.71828182845905^-}\left(\frac{\frac{\left(\frac{\left(1 + \frac{2}{\log{\left(\log{\left(x \right)} \right)}}\right) \left(\log{\left(\log{\left(x \right)} \right)} + 2\right)}{\log{\left(x \right)}} + \frac{\log{\left(\log{\left(x \right)} \right)} + 2}{\log{\left(x \right)}} + \frac{2 \left(\log{\left(\log{\left(x \right)} \right)} + 2\right)}{\log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}} + \frac{\log{\left(\log{\left(x \right)} \right)}^{2} + 2 \log{\left(\log{\left(x \right)} \right)} - \frac{2 \log{\left(\log{\left(x \right)} \right)}}{\log{\left(x \right)}} - \frac{2}{\log{\left(x \right)}}}{\log{\left(\log{\left(x \right)} \right)}}\right) \sin{\left(\frac{1}{x} \right)}}{\log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}} + \frac{2 \left(\log{\left(\log{\left(x \right)} \right)} + 2\right) \cos{\left(\frac{1}{x} \right)}}{x \log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}} + \frac{2 \cos{\left(\frac{1}{x} \right)} - \frac{\sin{\left(\frac{1}{x} \right)}}{x}}{x}}{x^{2} \log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}^{2}}\right) = \infty$$
$$\lim_{x \to 2.71828182845905^+}\left(\frac{\frac{\left(\frac{\left(1 + \frac{2}{\log{\left(\log{\left(x \right)} \right)}}\right) \left(\log{\left(\log{\left(x \right)} \right)} + 2\right)}{\log{\left(x \right)}} + \frac{\log{\left(\log{\left(x \right)} \right)} + 2}{\log{\left(x \right)}} + \frac{2 \left(\log{\left(\log{\left(x \right)} \right)} + 2\right)}{\log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}} + \frac{\log{\left(\log{\left(x \right)} \right)}^{2} + 2 \log{\left(\log{\left(x \right)} \right)} - \frac{2 \log{\left(\log{\left(x \right)} \right)}}{\log{\left(x \right)}} - \frac{2}{\log{\left(x \right)}}}{\log{\left(\log{\left(x \right)} \right)}}\right) \sin{\left(\frac{1}{x} \right)}}{\log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}} + \frac{2 \left(\log{\left(\log{\left(x \right)} \right)} + 2\right) \cos{\left(\frac{1}{x} \right)}}{x \log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}} + \frac{2 \cos{\left(\frac{1}{x} \right)} - \frac{\sin{\left(\frac{1}{x} \right)}}{x}}{x}}{x^{2} \log{\left(x \right)} \log{\left(\log{\left(x \right)} \right)}^{2}}\right) = \infty$$
- los límites son iguales, es decir omitimos el punto correspondiente
Intervalos de convexidad y concavidad:Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
No tiene corvaduras en todo el eje numérico