Sr Examen

Otras calculadoras

Gráfico de la función y = cbrt(x^3+x^2)

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
          _________
       3 /  3    2 
f(x) = \/  x  + x  
$$f{\left(x \right)} = \sqrt[3]{x^{3} + x^{2}}$$
f = (x^3 + x^2)^(1/3)
Gráfico de la función
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$\sqrt[3]{x^{3} + x^{2}} = 0$$
Resolvermos esta ecuación
Puntos de cruce con el eje X:

Solución analítica
$$x_{1} = -1$$
$$x_{2} = - \frac{1}{6} - \frac{\sqrt{3} i}{6} - \frac{1}{3 \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right)}$$
$$x_{3} = - \frac{1}{6} - \frac{1}{3 \left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right)} + \frac{\sqrt{3} i}{6}$$
Solución numérica
$$x_{1} = -1$$
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en (x^3 + x^2)^(1/3).
$$\sqrt[3]{0^{3} + 0^{2}}$$
Resultado:
$$f{\left(0 \right)} = 0$$
Punto:
(0, 0)
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$\frac{x^{2} + \frac{2 x}{3}}{\left(x^{3} + x^{2}\right)^{\frac{2}{3}}} = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = - \frac{2}{3}$$
Signos de extremos en los puntos:
        2/3 
       2    
(-2/3, ----)
        3   


Intervalos de crecimiento y decrecimiento de la función:
Hallemos los intervalos donde la función crece y decrece y también los puntos mínimos y máximos de la función, para lo cual miramos cómo se comporta la función en los extremos con desviación mínima del extremo:
La función no tiene puntos mínimos
Puntos máximos de la función:
$$x_{1} = - \frac{2}{3}$$
Decrece en los intervalos
$$\left(-\infty, - \frac{2}{3}\right]$$
Crece en los intervalos
$$\left[- \frac{2}{3}, \infty\right)$$
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$\frac{2 \left(x + \frac{1}{3} - \frac{\left(3 x + 2\right)^{2}}{9 \left(x + 1\right)}\right)}{\left(x + 1\right)^{\frac{2}{3}} \left|{x}\right|^{\frac{4}{3}}} = 0$$
Resolvermos esta ecuación
Soluciones no halladas,
tal vez la función no tenga flexiones
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
$$\lim_{x \to -\infty} \sqrt[3]{x^{3} + x^{2}} = \infty \sqrt[3]{-1}$$
Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la izquierda:
$$y = \infty \sqrt[3]{-1}$$
$$\lim_{x \to \infty} \sqrt[3]{x^{3} + x^{2}} = \infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la derecha
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función (x^3 + x^2)^(1/3), dividida por x con x->+oo y x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\sqrt[3]{x^{3} + x^{2}}}{x}\right) = - \sqrt[3]{-1}$$
Tomamos como el límite
es decir,
ecuación de la asíntota inclinada a la izquierda:
$$y = - \sqrt[3]{-1} x$$
$$\lim_{x \to \infty}\left(\frac{\sqrt[3]{x^{3} + x^{2}}}{x}\right) = 1$$
Tomamos como el límite
es decir,
ecuación de la asíntota inclinada a la derecha:
$$y = x$$
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$\sqrt[3]{x^{3} + x^{2}} = \sqrt[3]{- x^{3} + x^{2}}$$
- No
$$\sqrt[3]{x^{3} + x^{2}} = - \sqrt[3]{- x^{3} + x^{2}}$$
- No
es decir, función
no es
par ni impar