Sr Examen

Otras calculadoras

Gráfico de la función y = x^3+9x^2+15x-3

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
        3      2           
f(x) = x  + 9*x  + 15*x - 3
$$f{\left(x \right)} = \left(15 x + \left(x^{3} + 9 x^{2}\right)\right) - 3$$
f = 15*x + x^3 + 9*x^2 - 3
Gráfico de la función
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$\left(15 x + \left(x^{3} + 9 x^{2}\right)\right) - 3 = 0$$
Resolvermos esta ecuación
Puntos de cruce con el eje X:

Solución analítica
$$x_{1} = -3 - \frac{\sqrt[3]{81 + 27 \sqrt{55} i}}{3} - \frac{12}{\sqrt[3]{81 + 27 \sqrt{55} i}}$$
Solución numérica
$$x_{1} = 0.180140032988958$$
$$x_{2} = -6.69126777680543$$
$$x_{3} = -2.48887225618353$$
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en x^3 + 9*x^2 + 15*x - 3.
$$-3 + \left(\left(0^{3} + 9 \cdot 0^{2}\right) + 0 \cdot 15\right)$$
Resultado:
$$f{\left(0 \right)} = -3$$
Punto:
(0, -3)
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$3 x^{2} + 18 x + 15 = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = -5$$
$$x_{2} = -1$$
Signos de extremos en los puntos:
(-5, 22)

(-1, -10)


Intervalos de crecimiento y decrecimiento de la función:
Hallemos los intervalos donde la función crece y decrece y también los puntos mínimos y máximos de la función, para lo cual miramos cómo se comporta la función en los extremos con desviación mínima del extremo:
Puntos mínimos de la función:
$$x_{1} = -1$$
Puntos máximos de la función:
$$x_{1} = -5$$
Decrece en los intervalos
$$\left(-\infty, -5\right] \cup \left[-1, \infty\right)$$
Crece en los intervalos
$$\left[-5, -1\right]$$
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$6 \left(x + 3\right) = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = -3$$

Intervalos de convexidad y concavidad:
Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
$$\left[-3, \infty\right)$$
Convexa en los intervalos
$$\left(-\infty, -3\right]$$
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
$$\lim_{x \to -\infty}\left(\left(15 x + \left(x^{3} + 9 x^{2}\right)\right) - 3\right) = -\infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la izquierda
$$\lim_{x \to \infty}\left(\left(15 x + \left(x^{3} + 9 x^{2}\right)\right) - 3\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la derecha
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función x^3 + 9*x^2 + 15*x - 3, dividida por x con x->+oo y x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\left(15 x + \left(x^{3} + 9 x^{2}\right)\right) - 3}{x}\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota inclinada a la izquierda
$$\lim_{x \to \infty}\left(\frac{\left(15 x + \left(x^{3} + 9 x^{2}\right)\right) - 3}{x}\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota inclinada a la derecha
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$\left(15 x + \left(x^{3} + 9 x^{2}\right)\right) - 3 = - x^{3} + 9 x^{2} - 15 x - 3$$
- No
$$\left(15 x + \left(x^{3} + 9 x^{2}\right)\right) - 3 = x^{3} - 9 x^{2} + 15 x + 3$$
- No
es decir, función
no es
par ni impar