Sr Examen

Otras calculadoras

  • ¿Cómo usar?

  • Gráfico de la función y =:
  • (x+5)^2-9 (x+5)^2-9
  • x^(7/2)-3 x^(7/2)-3
  • x^3/ x^3/
  • x^4-3*x^2+4 x^4-3*x^2+4
  • Integral de d{x}:
  • x^2-2x^3
  • Expresiones idénticas

  • x^ dos -2x^ tres
  • x al cuadrado menos 2x al cubo
  • x en el grado dos menos 2x en el grado tres
  • x2-2x3
  • x²-2x³
  • x en el grado 2-2x en el grado 3
  • Expresiones semejantes

  • x^2+2x^3

Gráfico de la función y = x^2-2x^3

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
        2      3
f(x) = x  - 2*x 
$$f{\left(x \right)} = - 2 x^{3} + x^{2}$$
f = -2*x^3 + x^2
Gráfico de la función
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$- 2 x^{3} + x^{2} = 0$$
Resolvermos esta ecuación
Puntos de cruce con el eje X:

Solución analítica
$$x_{1} = 0$$
$$x_{2} = \frac{1}{2}$$
Solución numérica
$$x_{1} = 0$$
$$x_{2} = 0.5$$
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en x^2 - 2*x^3.
$$0^{2} - 2 \cdot 0^{3}$$
Resultado:
$$f{\left(0 \right)} = 0$$
Punto:
(0, 0)
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$- 6 x^{2} + 2 x = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = 0$$
$$x_{2} = \frac{1}{3}$$
Signos de extremos en los puntos:
(0, 0)

(1/3, 1/27)


Intervalos de crecimiento y decrecimiento de la función:
Hallemos los intervalos donde la función crece y decrece y también los puntos mínimos y máximos de la función, para lo cual miramos cómo se comporta la función en los extremos con desviación mínima del extremo:
Puntos mínimos de la función:
$$x_{1} = 0$$
Puntos máximos de la función:
$$x_{1} = \frac{1}{3}$$
Decrece en los intervalos
$$\left[0, \frac{1}{3}\right]$$
Crece en los intervalos
$$\left(-\infty, 0\right] \cup \left[\frac{1}{3}, \infty\right)$$
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$2 \left(1 - 6 x\right) = 0$$
Resolvermos esta ecuación
Raíces de esta ecuación
$$x_{1} = \frac{1}{6}$$

Intervalos de convexidad y concavidad:
Hallemos los intervales donde la función es convexa o cóncava, para eso veamos cómo se comporta la función en los puntos de flexiones:
Cóncava en los intervalos
$$\left(-\infty, \frac{1}{6}\right]$$
Convexa en los intervalos
$$\left[\frac{1}{6}, \infty\right)$$
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
$$\lim_{x \to -\infty}\left(- 2 x^{3} + x^{2}\right) = \infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la izquierda
$$\lim_{x \to \infty}\left(- 2 x^{3} + x^{2}\right) = -\infty$$
Tomamos como el límite
es decir,
no hay asíntota horizontal a la derecha
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función x^2 - 2*x^3, dividida por x con x->+oo y x ->-oo
$$\lim_{x \to -\infty}\left(\frac{- 2 x^{3} + x^{2}}{x}\right) = -\infty$$
Tomamos como el límite
es decir,
no hay asíntota inclinada a la izquierda
$$\lim_{x \to \infty}\left(\frac{- 2 x^{3} + x^{2}}{x}\right) = -\infty$$
Tomamos como el límite
es decir,
no hay asíntota inclinada a la derecha
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$- 2 x^{3} + x^{2} = 2 x^{3} + x^{2}$$
- No
$$- 2 x^{3} + x^{2} = - 2 x^{3} - x^{2}$$
- No
es decir, función
no es
par ni impar