Sr Examen

Otras calculadoras

Gráfico de la función y = -x^2/2tgx*ctgx

v

Gráfico:

interior superior

Puntos de intersección:

mostrar?

Definida a trozos:

Solución

Ha introducido [src]
         2               
       -x                
f(x) = ----*tan(x)*cot(x)
        2                
$$f{\left(x \right)} = \frac{\left(-1\right) x^{2}}{2} \tan{\left(x \right)} \cot{\left(x \right)}$$
f = (((-x^2)/2)*tan(x))*cot(x)
Gráfico de la función
Puntos de cruce con el eje de coordenadas X
El gráfico de la función cruce el eje X con f = 0
o sea hay que resolver la ecuación:
$$\frac{\left(-1\right) x^{2}}{2} \tan{\left(x \right)} \cot{\left(x \right)} = 0$$
Resolvermos esta ecuación
Solución no hallada,
puede ser que el gráfico no cruce el eje X
Puntos de cruce con el eje de coordenadas Y
El gráfico cruce el eje Y cuando x es igual a 0:
sustituimos x = 0 en (((-x^2)/2)*tan(x))*cot(x).
$$\frac{\left(-1\right) 0^{2}}{2} \tan{\left(0 \right)} \cot{\left(0 \right)}$$
Resultado:
$$f{\left(0 \right)} = \text{NaN}$$
- no hay soluciones de la ecuación
Extremos de la función
Para hallar los extremos hay que resolver la ecuación
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(la derivada es igual a cero),
y las raíces de esta ecuación serán los extremos de esta función:
$$\frac{d}{d x} f{\left(x \right)} = $$
primera derivada
$$- \frac{x^{2} \left(- \cot^{2}{\left(x \right)} - 1\right) \tan{\left(x \right)}}{2} + \left(- \frac{x^{2} \left(\tan^{2}{\left(x \right)} + 1\right)}{2} - x \tan{\left(x \right)}\right) \cot{\left(x \right)} = 0$$
Resolvermos esta ecuación
Soluciones no halladas,
tal vez la función no tenga extremos
Puntos de flexiones
Hallemos los puntos de flexiones, para eso hay que resolver la ecuación
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(la segunda derivada es igual a cero),
las raíces de la ecuación obtenida serán los puntos de flexión para el gráfico de la función indicado:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
segunda derivada
$$- x^{2} \left(\cot^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} \cot{\left(x \right)} + x \left(x \left(\tan^{2}{\left(x \right)} + 1\right) + 2 \tan{\left(x \right)}\right) \left(\cot^{2}{\left(x \right)} + 1\right) - \left(x^{2} \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 2 x \left(\tan^{2}{\left(x \right)} + 1\right) + \tan{\left(x \right)}\right) \cot{\left(x \right)} = 0$$
Resolvermos esta ecuación
Soluciones no halladas,
tal vez la función no tenga flexiones
Asíntotas horizontales
Hallemos las asíntotas horizontales mediante los límites de esta función con x->+oo y x->-oo
True

Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la izquierda:
$$y = \lim_{x \to -\infty}\left(\frac{\left(-1\right) x^{2}}{2} \tan{\left(x \right)} \cot{\left(x \right)}\right)$$
True

Tomamos como el límite
es decir,
ecuación de la asíntota horizontal a la derecha:
$$y = \lim_{x \to \infty}\left(\frac{\left(-1\right) x^{2}}{2} \tan{\left(x \right)} \cot{\left(x \right)}\right)$$
Asíntotas inclinadas
Se puede hallar la asíntota inclinada calculando el límite de la función (((-x^2)/2)*tan(x))*cot(x), dividida por x con x->+oo y x ->-oo
True

Tomamos como el límite
es decir,
ecuación de la asíntota inclinada a la izquierda:
$$y = x \lim_{x \to -\infty}\left(- \frac{x \tan{\left(x \right)} \cot{\left(x \right)}}{2}\right)$$
True

Tomamos como el límite
es decir,
ecuación de la asíntota inclinada a la derecha:
$$y = x \lim_{x \to \infty}\left(- \frac{x \tan{\left(x \right)} \cot{\left(x \right)}}{2}\right)$$
Paridad e imparidad de la función
Comprobemos si la función es par o impar mediante las relaciones f = f(-x) и f = -f(-x).
Pues, comprobamos:
$$\frac{\left(-1\right) x^{2}}{2} \tan{\left(x \right)} \cot{\left(x \right)} = - \frac{x^{2} \tan{\left(x \right)} \cot{\left(x \right)}}{2}$$
- No
$$\frac{\left(-1\right) x^{2}}{2} \tan{\left(x \right)} \cot{\left(x \right)} = \frac{x^{2} \tan{\left(x \right)} \cot{\left(x \right)}}{2}$$
- No
es decir, función
no es
par ni impar